结果:在Div 5至8的生长锥中,荧光构建体的分布相似。生长锥中TSMOD(28.5 3.6%)的平均FRET效率高于葡萄酒(24.6 2%)和VINTL(25.8 1.8%)(p <10-6)的平均FRET效率。虽然很小,但葡萄酒和VINTL的FRET效率之间的差异具有统计学意义(P <10-3),这表明Vinculin在生长锥中的张力低。用Rho相关激酶抑制剂Y-27632进行了两个小时的治疗不会影响平均FRET效率。生长锥显示出形态学的动态变化,如延时成像所观察到的。Vints FRET效率比TSMOD FRET效率随时间的函数显示出更大的方差,这表明与TSMOD相比,Vints FRET效率更大的葡萄酒效率对生长锥动力学的依赖性更大。
摘要 分析动态细胞内生物过程的一个挑战是缺乏足够快速且特异性的方法来扰乱细胞内蛋白质活动。我们之前通过在功能域之间插入蓝光控制的蛋白质二聚化模块,开发了微管加末端追踪蛋白 EB1 的光敏变体。在这里,我们描述了一种先进的方法,可以在单个基因组编辑步骤中用这种光敏变体替换内源性 EB1,从而使这种方法可以在人类诱导多能干细胞 (hiPSC) 和 hiPSC 衍生的神经元中使用。我们证明,在发育中的皮质神经元中,急性和局部光遗传学 EB1 失活会诱导生长锥周围微管解聚,随后导致神经突回缩。此外,前进的生长锥会被蓝光照射区域排斥。这些表型与神经元 EB1 同源物 EB3 无关,揭示了 EB1 介导的微管末端相互作用在神经元形态发生和神经突引导中的直接动态作用。
摘要。在半个多世纪的时间里,科学家开发了数学模型来了解人心的行为。今天,我们有数十种心脏组织模型可供选择,但是选择最佳模型仅限于专家专业人士,容易偏向用户偏见,并且容易受到人为错误的影响。在这里,我们将人类从循环中取出并自动化模型发现过程。朝向这个目标,我们建立了一种新型不可压缩的正性构型神经网络,以同时发现模型和参数,可以最好地解释人类心脏组织。值得注意的是,我们的网络具有32个内部术语,8个各向同性和24各向异性,并且完全自主选择了最佳模型,其中包括超过40亿可能的术语组合。我们证明我们可以通过三轴剪切和双轴扩展测试成功训练网络,并系统地将参数向量稀疏为L 1-正则化。引人注目的是,我们坚强地发现了一个四个期模型,该模型在第二个不变I 2中具有二次术语,而在第四和第八个不变的I 4F,I 4N和I 8F中,指数二次术语。重要的是,我们发现的模型是可以通过设计来解释的,并且具有具有良好固定的物理单位的参数。我们表明,它的表现优于流行的现有心肌模型,并且可以很好地概括,从均质实验室测试到异质的整个心脏模拟。这是通过直接将发现的网络权重作为输入的新的通用材料子例程来实现的。自动化模型发现的过程有可能使心脏建模,扩大科学发现的参与以及加速心血管疾病创新治疗的发展。
轴突是一款复杂的大分子机器,由相互关联的部分组成,它们在平行轴之间传输信号,例如旋转齿轮转移运动。生长锥是一种精细的传感器,可以通过产生的牵引力推动尖端并向前拉动轴突轴来整合机械和化学提示并传递这些信号。轴突轴反过来又感知了这种拉力,并在精心策划的响应中传递了该信号,协调细胞骨架重塑和插入的质量,以维持和支持尖端的前进。广泛的研究表明,主动力的直接应用本身是轴突生长的强大诱导剂,可能绕开了生长锥的贡献。本综述对当前有关力是轴突增长的使者及其控制导航的行动方式的知识的关键观点,包括尚不清楚的方面。它还专注于旨在机械操纵轴突的新型方法和工具,并讨论了它们在重新连接神经系统的潜在新疗法方面的影响。
神经营养因子,包括NGF,BDNF和神经胶质细胞系的神经营养因子(GDNF),通过激活诸如PI3K/AKT和MAPK/ERK PATH的细胞内信号传导级联,刺激神经元存活和轴突伸长。该信号传导促进了细胞骨架重排和生长锥的进步。再生轴突的再生对于恢复神经传导速度至关重要[6]。尽管周围神经具有内在的再生能力,但较大的神经间隙和未对准的纤维仍然是重大挑战。这需要辅助策略,例如神经移植,导管和生物材料来弥合缺陷并优化再生环境[7]。
突触体传统上是从啮齿动物或死后人类脑组织中富集的,但啮齿动物模型缺乏人类特有的突触特征,而死后组织中突触体的功能受到死后间隔的限制,并且通常仅显示疾病终点。此外,由于道德问题和可用性问题,只有少数研究针对人类样本。然而,神经类器官 (NO) 已成为分离完整和活的人类神经末梢以研究人类特有的突触传递方面的可能新来源。此外,突触体的富集通常使用密度梯度离心进行,这需要大量的起始材料。在本研究中,我们开发了一种应用差速离心方案从人类 NO 中富集突触结构的方法。然后,我们使用基于质谱的定量蛋白质组学来记录突触和生长锥特异性蛋白的富集,并在 KCl 刺激下进行定量磷酸化蛋白质组学来证明衍生突触结构的活力和生理功能。
神经元可以说是生物体中最复杂的形态复杂细胞之一,通常会延伸数百微米(即使不是米)。为了应对其独特的细胞对电池通信能力和空间扩散,神经元已经进化了特定的动态组织和亚细胞分化,例如树突状刺,轴突初始部分或生长锥,以维持特定的功能。在神经系统中,其他细胞类型(例如星形胶质细胞)也表现出特别复杂的形态,适合其特定功能和与神经元共组织。神经元或其他脑细胞的纳米级亚细胞组织以及子隔间之间的元素的运输已成为控制其功能的一组基本特性。突触,尤其是携带大多数兴奋性传播的突触前末端和相关的突触前末端,在突触后受体组织的水平和突触前释放机械1-3的隔离水平上都表现出特别复杂的纳米级组织。通过纳米柱4-7发现,该突触后组织的复杂性增加了。轴突初始段是另一个
Angelo Accardo是代尔夫特技术大学(TU DELFT)精密和微型系统工程系的副教授(TU DELFT),DELFT Young Academy的董事会成员,DELFT BioEngineering Institute委员会成员和国际微型Micro和Nanoegineering Conference的委员会成员。Accardo博士是同行评审期刊的50多个出版物的作者,第4章章节和1个工业专利的首席发明者。他的作品在自然界,当今的材料,高级材料,PNA,小型医疗保健材料中都有特色。在他的职业生涯中,他获得了几项奖项和赠款,包括:NWO ENW XS赠款,该项目是“质子放射生物学的3D工程脑癌微环境”; NWO ENW M-2授予该项目“人脑网络的3D细胞结构工程干细胞模型”; NWO ENW XS授予该项目“通过亚微米制造和超分辨率显微镜阐明神经元生长锥机械生物学”; NWO ENW XS授予该项目“使用光塑造血脑/肿瘤屏障”; NWO ENW XS授予该项目“通过工程干细胞衍生的模型揭示了空气污染物与阿尔茨海默氏病之间的联系”。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年2月22日发布。 https://doi.org/10.1101/2024.02.20.581294 doi:Biorxiv Preprint