对供体器官进行改造,使其能够更好地耐受与实体器官移植相关的有害非免疫和免疫反应,这将改善移植结果。我们对器官移植后缺血-再灌注损伤、同种免疫反应和病理性纤维增生的了解不断加深,并且基因治疗可用的先进工具包使这一目标更接近临床现实。体外器官灌注发展迅速,尤其是在肺移植领域,临床医生在移植前通常使用体外肺灌注 (EVLP) 来确认边缘供体肺的质量,从而能够安全移植最初被认为无法使用的器官。EVLP 也将是一个有吸引力的基因治疗平台,因为可以在移植前对分离的器官进行治疗,从而为复杂的器官工程提供了一个窗口,同时最大限度地减少了对接受者的脱靶效应。在这里,我们回顾了肺移植第一代基因疗法的现状,这些疗法侧重于在靶细胞中诱导转基因表达。我们还重点介绍了下一代基因疗法的最新进展,这些疗法实现了基因编辑和表观遗传工程,可用于永久改变供体器官基因组并诱导供体肺中广泛的转录基因表达调节。在未来的愿景中,专门的器官修复和工程中心将使用基因编辑和表观遗传工程,不仅可以增加供体器官库,还可以创造出更优秀的器官,使其在接受者体内发挥更好、更持久的作用。J Heart Lung Transplant 2024;43:838–848 © 2024 作者。由 Elsevier Inc. 代表国际心肺移植协会出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
摘要:随着全球对环境问题的关注,控制二氧化碳的排放已成为重要的全球议程。在这种情况下,新型能源车的开发(例如电动汽车)正在流动。但是,作为电动汽车的关键电源,机械滥用下的锂离子电池的安全性能引起了广泛关注。评估锂离子电池的安全性能需要深入研究。本文对锂离子电池机械滥用的最新实验和数值模拟进行了综述。它展示了实验研究的主要方法和结论,比较了准静态和动态负载下的不同反应形式,讨论了锂离子电池中应变率依赖性的原因,并描述了电荷(SOC)对机械滥用和机械滥用能力的安全性能以及机械滥用能力的影响。此外,本文结合了数值仿真研究的方法,分析了详细建模和均质建模方法的优点和缺点,总结了基于应变的内部短路故障标准,并审查了基于多物理学的数值预测模型。最后,它在研究电池组通过数值模拟的安全性能方面提供了最新的进展。
CB-012 是一种同种异体抗 CLL-1 CAR-T 细胞疗法,目前正在开发中,用于评估复发或难治性急性髓系白血病 (r/r AML) 的疗效。CB-012 采用新一代 CRISPR 基因组编辑技术设计,利用检查点破坏和免疫隐身来提高 CAR-T 细胞抗肿瘤活性。CLL-1 是一个引人注目的治疗靶点,因为它在 AML 肿瘤细胞和白血病干细胞中高度表达,但在造血干细胞中不表达。它也已被确定为已发表的人类概念验证研究中的靶点。在临床前研究中,CB-012 表现出显著的抗肿瘤功效和特定的 CLL-1 靶向细胞溶解活性。用于制造和装甲 CB-012 的基因组编辑策略相对于与 r/r AML 相关的免疫抑制肿瘤微环境具有功能优势。
背景和目标:促进胆管癌(CCA)的新颖有效的医学疗法有未满足的需求。河马途径效应子,与YES相关的蛋白(YAP)在CCA中具有致癌性,但从历史上看很难靶向thera。最近,我们描述了LCK原始癌基因,SRC家族酪氨酸激酶(LCK)在通过酪氨酸磷酸化激活YAP中的新作用。这导致了以下假设:LCK通过调节YAP活性是CCA中可行的治疗靶标。方法:一种新型的酪氨酸激酶抑制剂,具有LCK相对选择性,NTRC 0652-0,在体外和CCA细胞中是药效的促进性领导的。对八个CCA患者衍生的类器官进行了表征,并测试了对NTRC 0652-0的敏感性。使用了两种带有FILBLAST生长因子受体2(FGFR2)的患者衍生的异种移植模型 - 用于体内药代动力学,毒性和效率的体内评估。结果:NTRC 0652-0在体外和CCA细胞中表现出对LCK抑制作用的选择性。NTRC 0652-0抑制 LCK导致YAP的酪氨酸磷酸化,核定位和共转录活性降低,并导致CCA细胞系中的凋亡细胞死亡。 测试的患者衍生的类器官的子集表现出对NTRC 0652-0的敏感性。 CCA具有FGFR2融合的CCA被鉴定为潜在的易感且临床上相关的遗传亚群。 结论:一种新型的LCK抑制剂NTRC 0652-0,抑制YAP信号传导,并在CCA细胞系中证明了临床前的效能,以及患者衍生的类器官和异种移植模型。LCK导致YAP的酪氨酸磷酸化,核定位和共转录活性降低,并导致CCA细胞系中的凋亡细胞死亡。测试的患者衍生的类器官的子集表现出对NTRC 0652-0的敏感性。CCA具有FGFR2融合的CCA被鉴定为潜在的易感且临床上相关的遗传亚群。 结论:一种新型的LCK抑制剂NTRC 0652-0,抑制YAP信号传导,并在CCA细胞系中证明了临床前的效能,以及患者衍生的类器官和异种移植模型。CCA具有FGFR2融合的CCA被鉴定为潜在的易感且临床上相关的遗传亚群。结论:一种新型的LCK抑制剂NTRC 0652-0,抑制YAP信号传导,并在CCA细胞系中证明了临床前的效能,以及患者衍生的类器官和异种移植模型。在FGFR2融合阳性CCA的患者衍生异种移植模型中,NTRC 0652-0的每日口服治疗导致血浆稳定的血浆和肿瘤药物水平,可接受的毒性,降低YAP酪氨酸磷酸化,并显着降低肿瘤的生长。
填海局与Exagrid,Quantum和Dell EMC数据域完成了比较。开垦正在成为100%虚拟化的途径,并且已经选择了Veeam作为其备份软件。“我喜欢Exagrid在Veeam上运作良好的事实,并且具有许多我发现重要的功能 - 可扩展性,缓存,复制,数据删除,以及即时还原的着陆区。我也喜欢Exagrid具有自加密驱动器的事实。许多解决方案都有,但是正确的过程不支持它。由于其他供应商仅存储重复数据删除数据,因此该数据需要再合化,然后才能进行还原。现在,以公平的术语,我们正在运行Veeam,那里
摘要 - 游戏化是指从数字游戏到非游戏环境的平台。它已经出现在许多领域并影响到不同的人。本研究旨在总结关于游戏化作为激励因素的系统文献综述,并概述正在研究中的游戏化的各种用户、领域和应用。它描述了研究按来源和年份的分布。因此,本研究完成了对 2015 年至 2021 年期间在各种电子数据库中发表的 18 篇研究论文的系统文献综述。这研究了游戏化在健康和健身、在线学习、软件工程、学习、教学和虚拟现实等各个领域的最新发展。此外,它描述了游戏化下的大约 15 个应用,并指定了 8 个从中受益的用户;其中,游戏化让许多学生参与其中,提高了他们的参与度和积极性。由于疫情爆发,许多学生失去了对教育的参与度。因此,这种游戏化将帮助他们参与并受到激励。
。CC-BY 4.0 国际许可 它是永久可用的。 是作者/资助者,已授予 medRxiv 许可以在(未经同行评审认证)预印本中显示预印本 此版本的版权持有者于 2022 年 11 月 16 日发布。 ;https://doi.org/10.1101/2021.10.13.21264976 doi:medRxiv 预印本
摘要 在某些情况下,药物组合通过结合相同的蛋白质来影响不良结果表型;然而,药物结合蛋白通过细胞内的蛋白质-蛋白质相互作用 (PPI) 网络相关联,这表明药物表型可能是由远程网络效应引起的。我们首先使用 PPI 网络分析根据药物靶标下游的蛋白质对药物进行分类,然后预测药物组合效应,其中药物共享网络蛋白质但具有不同的结合蛋白(例如靶标、酶或转运蛋白)。通过使用下游蛋白质对药物进行分类,我们对黄金标准数据集中记录的罕见药物组合效应的预测灵敏度为 80.7%。我们进一步使用电子健康记录中的新观察性研究测量了预测的药物组合对不良结果表型的影响。我们测试了 60 个网络药物类别对 7 种不良结果的预测,并测量了预测组合的临床结果变化。这些结果展示了一种使用药物靶标下游蛋白质预测药物协同作用的新范例。
肺癌是全球癌症相关死亡的主要原因。肺腺癌 (LUAD) 是最常见的组织学亚型,占所有病例的 40%。虽然现有的基因工程小鼠模型 (GEMM) 重现了人类 LUAD 的组织学进展和转录进化,但它们耗时且技术要求高。相比之下,细胞系移植模型快速灵活,但这些模型无法捕捉疾病进展的全部范围。类器官技术提供了一种创建下一代癌症模型的方法,该模型整合了自体系统和基于移植的系统的最有利特征。然而,目前缺乏强大而可靠的 LUAD 类器官平台。在这里,我们描述了在类器官培养中持续扩增小鼠肺泡 2 型 (AT2) 细胞(LUAD 的主要起源细胞)的优化条件。这些类器官表现出 AT2 细胞的典型特征,包括标记基因表达、层状体的存在以及分化为 AT1 谱系的能力。我们利用该系统开发了灵活且多功能的免疫功能正常的类器官模型,用于 KRAS 、 BRAF 和 ALK 突变型 LUAD。值得注意的是,类器官肿瘤表现出广泛的负担和完全渗透性,并且在组织病理学上与原发肿瘤没有区别。总之,该类器官平台是一个功能强大、用途广泛的新型 LUAD 研究模型系统。
摘要:本文研究了轴向施加电场下圆柱形量子点结构的电子学与光学特性,选取四种不同的轴向双曲型势。考虑了一个位置相关的有效质量模型,在求解特征值微分方程时既考虑了有效质量在轴向随约束势变化的平滑变化,也考虑了其在径向的突变。特征值方程的计算同时考虑了狄利克雷条件(零通量)和开边界条件(非零通量),在垂直于施加电场方向的平面内实现,这保证了本文结果对于具有极高寿命的准稳态的有效性。采用对角化法结合有限元法,找到了圆柱形量子点中约束电子的特征值和特征函数。用于求解微分方程的数值策略使我们能够克服异质结构边界平面和圆柱面相交区域中边界条件存在的多个问题。为了计算线性和三阶非线性光学吸收系数以及折射率的相对变化,我们使用了密度矩阵展开中的两级方法。我们的结果表明,通过改变结构参数(例如轴向电位的宽度和深度以及电场强度),可以调整所关注结构的电子特性和光学特性,以获得适合特定研究或目标的响应。