表 3.1. 2022 年和 2023 年南达科他州布鲁金斯、米勒和海莫尔整个生长季 (GP) 收集的每月降雨量和温度数据。 ........................................................................................................... 30 表 3.2. 东部和中部 SD 种植前的土壤物理和化学特性 ........................................................................................................................... 31 表 4.1. 2022 年和 2023 年南达科他州布鲁金斯、米勒和海莫尔向日葵生长度日(基准 6.7 °C)。 ........................................................................................................... 40 表 4.2. 2022 年和 2023 年布鲁金斯不同氮肥施用率和位置下的 V-10、R-8 阶段叶片叶绿素含量(2022 年)、R-1 和 R-5 阶段叶片叶绿素含量(2023 年)、植物高度(cm)和茎直径(mm)。 ........................................................................................... 46不同氮肥施用量下向日葵 V-10 阶段叶片叶绿素含量的放置分析 Brookings 2022。 ......................................................................................... 46 表 4.4. 不同氮肥施用量下向日葵株高(cm)、茎直径(cm)的放置分析 Brookings 2023。 ............................................................................................. 47 表 4.5. 不同氮肥施用量和放置条件下 V-10、R-8 阶段(2022)的叶片叶绿素含量,R-1、R-5 阶段(2023)的叶片叶绿素含量,植物高度(cm) Miller 2022 和 Highmore 2023................ 48 表 4.6. 不同氮肥施用量和放置条件下平均 NDVI 对 Brookings 2022 和 2023 的影响。 ............................................................................................. 51表 4.8. 2022 年和 2023 年 Miller 和 Highmore 不同 N 施肥量和位置对平均 NDVI 的影响。 ........................................................................................... 52 表 4.8. 2022 年 Brookings 和 2022 年 Miller 不同 N 施肥量对平均 NDVI 的影响的放置分析。 ........................................................................... 53 表 4.9. 2022 年和 2023 年 Brookings 不同 N 施肥量和位置下向日葵的头直径(cm)、百粒重(克)、种子产量(kg ha -1 )、蛋白质浓度(g kg -1 )、油浓度(g kg -1 )和油产量(kg ha -1 )。 ............................................................................. 64 表 4.10. 2022 年 Brookings 不同 N 施肥量下向日葵的产量(kg ha -1 )和蛋白质浓度(g kg -1 )的放置分析。 ........................................................... 65穗直径(厘米)、百粒种子重量(克)、种子产量(千克/公顷)、Miller 2022 和 Highmore 2023 在不同氮肥施用量和地点下向日葵的蛋白质浓度(g kg -1 )油浓度(g kg -1 )和油产量(kg ha -1 )。 ............................................................................................................................. 66 表 4.12. 氮肥成本、葵花籽价格、经济最佳施氮量(EONR)。 ........................................................................................................................................... 67 表 4.13. Brookings 2022、Miller 2022、Brookings 2023 和 Highmore 2023 的收获后茎秆氮含量(kg ha -1 )。 ........................................................................................... 69 表 4.14. Brookings 2022 和 2023 深度(0-15 和 15-30 cm)的收获后土壤 NO 3 µg g -1 和 NH 4 µg g -1。 ......................................................................................................... 71 Miller 2022 和 Highmore 2023 深度(0-15 和 15-30 cm)处收获后土壤 NO 3 (µg g -1 ) 和 NH 4 (µg g -1 )。............................................................................. 72
UDRAW秋季2024年可用职位艺术与设计项目描述:Raven Press是一个实验性的凸版印刷设施,位于特拉华大学老学院(北)校园附近的Studio Arts Building二楼。艺术与设计系教授凯蒂·利奇(Katie Leech)维持新闻界和倡导者在学生教育中排版和物理过程的重要性。该项目将允许所有学生使用动手打印过程探索有关版式的实验。在探索时,您还将帮助创建库存,清洁并组织我们过去20年中收集的数千封信。有兴趣更好地了解凸版印刷的历史以及它如何为群众创建内容的工作。英语,艺术和设计的学生享受了与移动类型一起工作的机会,以创建图像和印刷作品,例如诗歌小册子,杂志和小型出版物。时间承诺:小时/周:5-10申请:如果有兴趣,请通过电子邮件,katiefai@udel.com与Katie Leech联系,您必须在星期一或星期三提供。必需技能:1。保持良好的学术地位(GPA为3.0或更高)2。对学生学习感兴趣3。被组织4。有良好的时间管理技能5。具有良好的沟通技巧6。注意细节7。能够每周至少进行5个小时的工作(最多限制10小时)8。名称2。2024年秋季学期的每周可用时间3。手机编号4。6。有兴趣学习印刷和版画制作(欢迎非艺术家)主题行:Raven Press研究助理以下信息:1。首选电子邮件地址5。关于您在Raven Press工作的兴趣的简短声明。简历或简历(可选)工商管理
与原生岛和太平洋岛民(NHPI)的导航和寻路的融合已演变为模范定位,导航和定时技术,这些技术有助于努力为夏威夷的山山和珊瑚礁提供努力。要从数十年的侵蚀中恢复受损的珊瑚礁,两位杨百翰大学教授正在与夏威夷的同行,该大学的波利尼西亚文化中心和Kuleana Coral Restoration合作。将近十年的时间,使用GPS和其他技术,教授一直从事环境项目,以莫卡(Mauka)为Makai,或从山到海洋到海洋。BYU教授理查德·吉尔(Richard Gill)博士说,夏威夷群岛的西方发展构成了许多环境和文化挑战,他利用遥感,生态信息和传感器仪器来评估人类对沿海和海洋生态系统的影响。“随着欧洲人的到来,环境不仅发生了不利的变化,而且通过使NA-
植物使用光合作用以化学键的形式存储太阳能。但是,此过程的效率取决于光的颜色,这表明使用频谱优化来源来增强植物的生长。在这个项目中,成功的候选人将使用无机荧光纳米颗粒将太阳能光谱聚焦于光谱区域,该光谱区域更有效地针对光合作用过程。旁边是尖端纳米材料的合成和普通表征,在太阳能下,候选人将有机会直接测试其光学性能对藻类或植物生长的影响。
b'Abstract:模块化聚酮化合物合酶(PKS)是巨型组装线,产生了令人印象深刻的生物活性化合物。然而,我们对这些巨质的结构动力学的理解,特别是酰基载体蛋白(ACP)结合的构建块的递送到酮类合酶(KS)结构域的催化位点的构建块仍然受到严重限制。使用多管结构方法,我们报告了在根瘤菌毒素PK的链分支模块中C C键形成后域间相互作用的详细信息。基于机制的工程模块的交联,使用作为迈克尔受体的合成底物底座。交联蛋白使我们能够通过低温电子显微镜(Cryo-EM)在C键形成时鉴定出二聚体蛋白复合物的不对称态。AlphaFold2预测也指示了两个ACP结合位点的可能性,其中一个用于底物加载。NMR光谱表明,在溶液中形成了瞬态复合物,独立于接头结构域,并且具有独立域的光化学交联/质谱法使我们能够查明域间相互作用位点。在C C键形成后捕获的分支PK模块中的结构见解可以更好地理解域动力学,并为模块化装配线的合理设计提供了宝贵的信息。
摘要:群体感应 (QS) 是一种细胞间通讯机制,可调节细菌致病性、生物膜形成和抗生素敏感性。在已鉴定的群体感应中,AI- 2 QS 存在于革兰氏阴性菌和革兰氏阳性菌中,并负责跨物种通讯。最近的研究强调了磷酸转移酶系统 (PTS) 与 AI-2 QS 之间的联系,这种联系与 HPr 和 LsrK 之间的蛋白质-蛋白质相互作用 (PPI) 有关。在这里,我们首先通过分子动力学 (MD) 模拟、虚拟筛选和生物测定评估发现了几种针对 LsrK/HPr PPI 位点的 AI-2 QSI。在购买的 62 种化合物中,八种化合物在基于 LsrK 的测定和 AI-2 QS 干扰测定中表现出显着的抑制作用。表面等离子体共振 (SPR) 分析证实,命中化合物 4171-0375 特异性结合 LsrK-N 蛋白(HPr 结合域,KD = 2.51 × 10 − 5 M ),因此与 LsrK/HPr PPI 位点结合。结构-活性关系 (SAR) 强调了与疏水口袋的疏水相互作用以及与 LsrK 关键残基的氢键或盐桥对于 LsrK/HPr PPI 抑制剂的重要性。这些新的 AI-2 QSI,尤其是 4171-0375,表现出新颖的结构、显著的 LsrK 抑制作用,适合进行结构修饰以寻找更有效的 AI-2 QSI。
凌欣宇, 1 , 5 常丽英, 1 , 5 陈鹤琪, 1 高晓琴, 1 尹建航, 2 , 3 左毅, 1 黄玉佳, 1 张波, 4 胡佳芝, 2 , 3 和刘涛 1 , 6 , * 1 北京大学药学院天然药物及仿生药物国家重点实验室, 北京市海淀区学院路 38 号, 100191, 中国 2 北京大学生命科学学院细胞增殖分化教育部重点实验室, 基因组编辑研究中心, 北京 100871, 中国 3 北京大学北大-清华生命科学联合中心, 北京 100871, 中国 4 中国医学科学院北京协和医学院北京协和医院医学研究中心, 北京 100730, 中国 5 上述作者贡献相同 6 主要联系人*通讯地址:taoliupku@pku.edu.cn https://doi.org/10.1016/j.molcel.2021.09.021
手动脑肿瘤注释过程耗时耗力,因此,对自动化、精准的脑肿瘤分割工具的需求十分巨大。在本文中,我们介绍了一种新方法,将位置信息与最先进的基于块的神经网络相结合,用于脑肿瘤分割。这是基于以下观察结果:病变并非均匀分布在不同的脑分区区域中,而局部敏感的分割可能会获得更好的分割精度。为此,我们使用蒙特利尔神经研究所 (MNI) 空间中现有的脑分区图谱,并将该图谱映射到单个受试者数据。受试者数据空间中的映射图谱与结构磁共振 (MR) 成像数据相结合,并训练基于块的神经网络(包括 3D U-Net 和 DeepMedic)对不同的脑病变进行分类。在提出的两级集成方法中,训练了多个最先进的神经网络并将其与 XGBoost 融合相结合。第一级通过不同的种子初始化来降低同一类型模型的不确定性,第二级利用不同类型的神经网络模型的优势。所提出的位置信息融合方法提高了包括 3D U-Net 和 DeepMedic 在内的最先进网络的分割性能。与 BraTS 2017 中最先进的网络相比,我们提出的集成还实现了更好的分割性能,并与 BraTS 2018 中最先进的网络相媲美。在公共多模态脑肿瘤分割 (BraTS) 基准上提供了详细结果。
