- 参与者应该能够理解人工智能 (AI) 的局限性。- 参与者应该能够充分提出 AI 问题以获得尽可能准确的答案。- 参与者应该能够使用 AI 来创建学习技巧和技巧。- 参与者应该能够回忆起使用 AI 来提高个人和学术能力的其他资源。- 参与者应该能够知道如何将 AI 用作资源而不是缺陷。
摘要 胶质母细胞瘤 (GBM) 是成人中最常见的原发性中枢神经系统肿瘤。GBM 的致命性在于其高度侵袭性、浸润性和神经破坏性,导致治疗失败、肿瘤复发和死亡。即使采用目前的手术、放疗和化疗等标准治疗方法,存活的肿瘤细胞也会侵入整个大脑。我们之前已经表明,这种侵袭性表型是由富含肌动蛋白的膜基结构(称为侵袭性伪足)促成的。在经治疗后存活下来的 GBM 细胞中,侵袭性伪足的形成和基质降解活性增强。药物再利用提供了一种识别现有药物新治疗应用的方法,而无需发现或开发以及相关的临床实施时间。我们研究了几种 FDA 批准的药物,因为它们既可以作为降低细胞活力的细胞毒性药物,也可以作为 GBM 细胞系中的“抗侵袭性伪足”药物。根据细胞毒性特征,我们选择了三种药物,即硼替佐米、依维莫司和氟达拉滨,以测试它们对 GBM 细胞侵袭的影响。这三种药物除了降低 GBM 细胞活力外,还降低了辐射/替莫唑胺诱导的侵袭性足活动。这些药物表现出有效的特性,值得进一步研究,并有可能作为 GBM 治疗方案的一部分实施。
背景和目的:本研究旨在通过靶向 17 种用于治疗口腔扁平苔藓 (OLP)(一种慢性粘膜皮肤病)的选定药物来研究 COVID-19 的主要蛋白质。在此,我们试图更好地了解针对特定蛋白质的各种药物的结构,这将有助于开发用于治疗和预防措施的药物。方法:在计算机研究中,进行了分子对接和分子动力学模拟,以重新利用用于治疗 OLP 的治疗药物 (n = 17) 来对抗 COVID-19。此外,还评估了关键蛋白刺突糖蛋白、冠状病毒的主要蛋白酶 (M pro ) 和血管紧张素转换酶-2 (ACE-2) 在人体中与选定药物的最大结合亲和力。结果:在选定的重新利用药物中,表没食子儿茶素-3-没食子酸酯 (EGCG) 显示出最高的对接值。在靶蛋白中,EGCG 与 ACE-2 受体显示出最大的结合亲和力。此外,根据分子动力学模拟研究,EGCG 与 M pro 的构象波动最小。结论:EGCG 可能是一种潜在的抑制剂药物,可与 ACE-2 受体结合,从而抑制 SARS-CoV-2 主要 M pro 蛋白与刺突糖蛋白的相互作用。与患者的相关性:EGCG 是一种天然化合物,具有抗病毒潜力,与 SARS-CoV-2 具有相当高的亲和力和稳定性。在必要的临床试验后,它可能进一步被用作针对 SARS-CoV-2 选择性抑制剂的先导药物,用于治疗 COVID-19 患者。
由线性融合的多环芳烃(PAH)组成,取决于它们的大小,形状,最重要的是边缘结构。基于边缘NRS可以分类为coveed,扶手椅边缘和锯齿形边缘NRS。9 - 13 Cove-Edge-NRS 14具有特别的兴趣,因为它们有可能是手性的,这是由于Cove地区的空间障碍引起的非平面性。圆形的NRS可以采用扭曲的con,无论是螺旋的还是摇摆的(随机扭曲),包括沿着其边缘的特定c s层。15 - 18然而,由于螺旋构和摇摆构构之间的最小相对能量差异,由于内部海湾的手性迅速,螺旋构和摇摆构构之间的相对能量差异很小。14,19,20具有ord区域的NR,例如Wang等人的Supertwistacene 21。和三分之一的HBC(Hexa- peri -hexabenzocoronene)22由Campana等人。- 表现出较高的屏障,可以室温手性分辨率。带有海湾区域的纳米摄影师相对扭曲相对困难,因为大多数环在正交平面上占据了,替代方案有限。
摘要:在强化农业中过度使用化学物质对土壤多样性和生育能力产生了负面影响。一种发展可持续农业的策略可以依靠使用基于微生物的肥料(称为生物肥料)的使用。如果小型农民可以使用森林垃圾生产自己的生物量化剂,这是微生物多样性最高的垃圾之一。这项研究的目的是表征发酵森林垃圾(FFL)的微生物群落,假设发酵过程将改变其丰度和多样性。我们调查了所用初始垃圾的化学构成两种类型的不同,以及它们起源于森林的气候环境。使用定量PCR和分子基因分型技术评估细菌和真菌群落的丰度和多样性。使用红外光谱法比较了垃圾化学成分。获得的结果表明,发酵含有丰富的细菌,但降低了真菌。发酵后观察到的有机物组成的变化也显着降低了细菌和真菌群落的α多样性。与初始垃圾相比,脂肪族分子的比例较高,而FFL的C/N较低表明,一旦添加到土壤中,应迅速分解FFL。必须采用测序技术进行进一步的研究,以确定可能对植物生长有益的微生物物种。这项初步研究表明,用作生物肥料的FFL的农艺利益与植物易于吸收的营养物质的贡献相比,与构成其构成的微生物的多样性相关。
电子邮件:yasminjustine@unipam.edu.edu.br摘要简介:本文提出了一项系统的文献综述,该评论提出了评估大麻作为各种病态患者慢性疼痛的治疗方法。目的:这项研究的主要目的是通过综合综述来证明大麻在治疗慢性疼痛患者中的主要治疗作用。方法论:峰值策略用于阐述指导问题。在2017年至2023年之间确定了与主题相关的10,000多个出版物。但是,在严格包含和排除标准之后,只选择了14项研究进行最终分析。结果和讨论:主要发现表明,将大麻用作互补疗法可以为患有慢性难治性疼痛的患者带来重大好处,或者对常规治疗几乎没有反应。结论:观察到的好处包括减少阿片类药物的消费量和患者生活质量的大幅改善。但是,重要的是要强调,由于法律,道德和社会的影响,将大麻用于治疗目的仍然是一个有争议的话题。讨论涉及诸如患者接受这种治疗形式的调节,剂量,监测和访问之类的问题。
AlN 被广泛用作压电 MEMS 中的压电薄膜。ScN 的添加大大改善了 AlN 有限的性能。Sc 含量达到 43at% 之前,AlScN 结晶为纤锌矿结构,并表现出压电耦合的持续改善。Sc 含量超过 43at% 时,AlScN 恢复为立方结构,不具有压电特性。AlScN 最有利的方法是使用 N 2 气氛中的 AlSc 合金靶材溅射。
她效应大学,她的官员,S1 3JD,英国B b曼彻斯特大学化学工程系,曼彻斯特大学,曼彻斯特大学,M13 9PL,英国C英国C型催化枢纽,Harwell,Harwell,Harwell,Harwell,Rutherford Appleton,Rutherford Appleton,Harwell,Harwell,Harwell,Harwell,Ox11 0fa,UK demang dement,UK D Inturand of nucement of nordy n forne Elettra-Sincrotrone Trieste, Strada Statale 14, 34149, Basovizza, Trieste, Italy f Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK g Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK h The University of Manchester at Harwell, Diamond Light Source, Harwell Science and Innovation校园,DIDCOT OX11 0DE,UK她效应大学,她的官员,S1 3JD,英国B b曼彻斯特大学化学工程系,曼彻斯特大学,曼彻斯特大学,M13 9PL,英国C英国C型催化枢纽,Harwell,Harwell,Harwell,Harwell,Rutherford Appleton,Rutherford Appleton,Harwell,Harwell,Harwell,Harwell,Ox11 0fa,UK demang dement,UK D Inturand of nucement of nordy n forne Elettra-Sincrotrone Trieste, Strada Statale 14, 34149, Basovizza, Trieste, Italy f Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK g Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK h The University of Manchester at Harwell, Diamond Light Source, Harwell Science and Innovation校园,DIDCOT OX11 0DE,UK她效应大学,她的官员,S1 3JD,英国B b曼彻斯特大学化学工程系,曼彻斯特大学,曼彻斯特大学,M13 9PL,英国C英国C型催化枢纽,Harwell,Harwell,Harwell,Harwell,Rutherford Appleton,Rutherford Appleton,Harwell,Harwell,Harwell,Harwell,Ox11 0fa,UK demang dement,UK D Inturand of nucement of nordy n forne Elettra-Sincrotrone Trieste, Strada Statale 14, 34149, Basovizza, Trieste, Italy f Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK g Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK h The University of Manchester at Harwell, Diamond Light Source, Harwell Science and Innovation校园,DIDCOT OX11 0DE,UK
聚(3-己基噻吩) (P3HT) 被发现是一种高效的低密度聚乙烯 (LDPE) 电导率降低添加剂,这为共轭聚合物领域开辟了一个新的应用领域。降低绝缘材料在高电场下的直流 (DC) 电导率的添加剂引起了广泛的研究兴趣,因为它们可能有助于设计更高效的高压直流电力电缆。研究发现,0.0005 wt% 的超低浓度区域规则性 P3HT 可将 LDPE 的直流电导率降低三倍,这意味着迄今为止所有电导率降低添加剂中效率最高的。这里建立的方法,即使用共轭聚合物作为单纯的添加剂,可能会在绝对数量上增加需求,超过薄膜电子产品所需的数量,这将使有机半导体从一种小众产品转变为大宗化学品。
“鉴于数据库会定期更新,分析应在申请提交前一年内进行。”完全按照提交时提供的指南进行的分析应在整个风险评估过程中保持有效,即使指南文件在此期间更新。