2024 年 7 月 27 日——指示下列签名者分发首席执行官、EESL 的 DO 信函副本......虽然工业部门经常采取能源效率干预措施......
开放的科学数据存储库(OSDR)使从实验和任务中访问与空间相关的数据,这些数据研究了陆地对太空飞行的生物学反应。
p-糖蛋白(P-gp)是ATP结合盒(ABC)转运蛋白家族的成员,在多药耐药性(MDR)在癌症治疗中起着至关重要的作用。p-gp积极地从癌细胞中泵送化学治疗药物,降低其细胞内浓度,从而降低其疗效。本综述探讨了P-gp对MDR贡献的机制,包括内在和获得的抗性。它还讨论了抑制P-gp的各种策略,例如阻断药物结合位点,干扰ATP水解以及改变细胞膜整体性。还检查了第四代P-gp抑制剂和其他新型抑制剂的潜力,以增强癌症疗法的有效性。理解和克服P-gp介导的MDR对于改善癌症患者的治疗结果至关重要。关键字
本申请说明详细介绍了复杂生物矩阵中毒理药物筛查的方法。该方法是在具有敏捷的ChemVista Spectral Spectral Library库Manager和Agilent MassHunter定量分析软件的Agilent速度液相色谱/四极型飞行时间质谱仪(LC/Q-TOF MS)上开发的。版本12.1。嵌入在MassHunter定量分析软件中的LC筛选器工具用于快速回顾典型的大浓度范围内的广泛目标分析物的数据独立于数据的采集(DIA)方法。本申请说明描述了一个完整的筛选工作流程,包括样品制备,可疑筛查和数据分析结果,用于筛查相关生物矩阵中毒理学药物。
摘要 - 关于可变形线性对象(DLO)操纵的大多数研究都假定刚性抓握。然而,除了刚性的抓握和重新抓紧之外,在掌握的范围之外,人类也是人类使用敏捷操纵DLOS的重要技能,它需要通过握住DLO来防止其掉落的同时通过手动滑动来连续更改抓握点。在没有使用专门设计但不是多功能的最终效果的情况下,实现这种技能对于机器人来说非常具有挑战性。以前的作品尝试使用通用的平行抓地力,但是由于关注和持有之间的冲突,它们的稳健性并不令人满意,这很难与一级自由的抓手保持平衡。在这项工作中,受到人类如何使用手指跟随DLOS的启发,我们探索了具有触觉感知的通用灵巧的手的用法,以模仿人类的技能并获得强大的DLO跟随。为了使硬件系统能够在现实世界中运行,我们开发了一个框架,其中包括笛卡尔空间手臂控制,基于触觉的In-Hand-hand 3-D DLO姿势估计以及特定于任务的运动设计。实验结果证明了我们方法比使用平行抓手的显着优势,以及它的稳健性,可推广性和效率。
USask 的临时人工智能 (AI) 原则和指南 i USask 的 AI 原则旨在确保以支持 USask 的使命、愿景、价值观和战略目标的方式合乎道德、有效和负责任地使用 AI,并维护所有利益相关者的信任和信心。这些原则和指南旨在指导我们提供、支持和使用 AI 工具开展研究、教学、管理和支持服务。重要的是,当 AI 成为研究或教学的主题时(例如,关于 AI 的研究或教学),其中一些原则和指南可能不适用。这些活动被视为通过其他大学政策和实践以及学术自由的权利和义务进行管理。USask 坚持包括合议和包容性 ii 在内的核心价值观。重要的是,我们的流程包括研究人工智能 (AI) 使用教育特定原则的有影响力的例子,包括《北京人工智能与教育共识》 iii 和世界经济论坛的《教育人工智能七项原则》 iv 。这些框架要么以联合国教科文组织的《人本主义人工智能十大核心原则》为基础,要么以此为参考。以这些国际范例为参考点,萨斯喀彻温大学人工智能原则是通过一个强大而反复的过程制定的,该过程涉及来自我们校园各地的社区成员。萨斯喀彻温大学的人工智能原则和实践对于萨斯喀彻温大学的人工智能使用具有包容性、响应性和有效性。我们将继续采取持续响应的方式,以不断发展的人工智能原则和指导方针——考虑大学社区的反馈和人工智能技术的进步——以确保人工智能的使用保持有效、相关,并与我们大学不断变化的需求和价值观保持一致。随着萨斯喀彻温大学社区成员得到支持,将他们的人工智能实践与这些原则和指导方针保持一致,将培养一种负责任和道德的人工智能文化。萨斯喀彻温大学将接受我们作为人工智能使用方面的批评者和社会良知的角色,将公开其人工智能使用的原则和指导方针,并随着原则和指导方针的不断发展及时提供更新。重要的是,这些原则代表了我们在快速变化的环境中使用人工智能的愿望。道德和负责任的使用 1. 负责任。人类有意的选择和行动引领着我们对人工智能的使用,而人工智能
摘要。机器人在仓库自动化中的参与为研究诸如紧密包装之类的逻辑任务提出了新的问题,其中必须以定期和有序的方式完全填充物品,从而使它们之间的最低限度的间隙。这项工作调查了使用具有被动合规性的系统可靠的放置策略的效果,以提高此任务中的鲁棒性和成功率。该方法已集成到完整的管道中,以执行包装操作,并在真实的机器人中评估,使用机械兼容的混合抓地力,具有可变刚度,探索了任务执行中手部配置和刚度级别的作用。沿着不同的评估任务,与琐碎的插入策略相比,由于可靠的插入策略,结果显示出成功率的提高。他们还证明了使用可变刚度减少误差传播的功效。
准确地对重型车辆(例如卡车)的动态进行建模对于安全自动导航至关重要。动态模型需要在各种天气和道路状况以及不同的负载配置下捕获复杂的系统行为。此摘要概述了在自动驾驶汽车的运动计划和控制背景下,物理知识的长期记忆(PI-LSTM)网络的整合为动态模型。通过利用LSTM的预测能力来建模复杂的动力学,并通过在损失函数中添加物理约束而施加的普遍性,我们为生成针对运动计划和控制而定制的更有效和可靠的预测的框架。车辆建模的系统识别问题旨在解决以下普通微分方程:
年龄,精心选择预训练数据,促进具有高保真和效率的DP数据集的有效创建。p iVimage首先使用公共数据集建立语义查询函数。然后,此功能有助于查询敏感数据集的语义分布,从而促进了从公共数据集中选择使用类似语义进行预训练的数据。最后,我们使用选定的数据预先培训图像通用模型,然后使用私有随机梯度下降(DP-SGD)在敏感数据集上微调此模型。p Ivimage使我们能够训练一个易于参数化的生成模型,从而在DP-SGD训练过程中降低了梯度的噪声并增强训练稳定性。广泛的实验表明,与最先进的方法相比,P iVimage仅使用1%的公共数据集进行预训练和7.6%的参数,而实现了卓越的合成性能并保守更多的计算资源。平均而言,P铆接比最先进的方法提高了6.8%的FID和分类精度13.2%。可以在线访问复制软件包和数据集1。
大型语言模型 (LLM) 可用作生物和化学信息库,以生成药理学先导化合物。然而,要使 LLM 专注于特定的药物靶点,通常需要使用逐步更精细的提示进行实验。因此,结果不仅取决于对靶点的了解,还取决于对提示工程的了解。在本文中,我们将提示分为可以以标准逻辑形式编写的领域约束和简单的基于文本的查询。我们研究是否可以引导 LLM,不是通过手动优化提示,而是通过自动优化逻辑组件,保持查询不变。我们描述了一个迭代过程 LMLF(“具有逻辑反馈的语言模型”),其中使用逻辑泛化概念逐步优化约束。在任何迭代中,都会根据约束验证新生成的实例,为下一次迭代对约束的优化提供“逻辑反馈”。我们使用两个众所周知的靶点(Janus 激酶 2 和多巴胺受体 D2 的抑制)和两个不同的 LLM(GPT-3 和 PaLM)来评估 LMLF。我们表明,从相同的逻辑约束和查询文本开始,LMLF 可以引导两个 LLM 生成潜在线索。我们发现:(a) LMLF 生成的分子的结合亲和力比现有基线的结合亲和力更偏向更高的结合亲和力;(b) LMLF 生成的分子比没有逻辑反馈的分子更偏向更高的结合亲和力;(c) 计算化学家的评估表明 LMLF 生成的化合物可能是新型抑制剂。这些发现表明,具有逻辑反馈的 LLM 可能提供一种生成新线索的机制,而无需领域专家获得复杂的快速工程技能。