摘要。本文旨在研究工业 4.0 场景中的“技术援助”,并使用制造执行系统 (MES) 来满足车间轻松提取信息的需求。我们确定了用户友好型 MES 界面的具体要求,以开发(和测试)技术援助方法,并引入带有预测系统的聊天机器人作为 MES 的接口层。聊天机器人旨在通过协助车间员工并从他们的输入中学习,从而充当智能助手,实现生产协调。我们编写了一个原型聊天机器人作为概念验证,其中新的接口层以自然语言提供与生产相关的实时更新,并为 MES 增加了预测能力。结果表明,与传统搜索技术相比,MES 的聊天机器人界面对车间员工有益,并且可以轻松提取信息。本文为制造信息系统领域做出了贡献,并展示了工厂中的人机协作系统。特别是,本文推荐了如何开发基于 MES 的技术援助系统,以便于检索信息。
风险缓解 独立电力生产商采购计划 EAF 能源可用性因子 RSA 南非共和国 EIA 环境影响评估 SAGC 南非电网规范 EC 东开普省地区 SMR 小型模块化反应堆
摘要:利用四类相位编码刺激,开发了基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)系统。将高于临界融合频率(CFF)的60Hz闪烁光诱发的SSVEP与15Hz和30Hz的SSVEP进行比较。采用任务相关成分分析(TRCA)方法检测脑电图(EEG)中的SSVEP成分。对17名受试者的离线分析表明,60Hz的最高信息传输速率(ITR)为29.80±4.65bpm,数据长度为0.5s,分类准确率为70.07±4.15%。在线BCI系统在4s的60Hz下达到平均分类准确率为87.75±3.50%,ITR为16.73±1.63bpm。具体来说,受试者在60Hz下的最大ITR为80bpm,持续时间为0.5s。虽然60Hz的BCI性能低于15Hz和30Hz,但行为测试的结果表明,在无闪烁感知的情况下,60Hz的BCI系统比15Hz和30Hz的BCI系统更舒适。相关性分析表明,信噪比(SNR)较高的SSVEP对应更好的分类性能,舒适度的提高伴随着性能的下降。本研究证明了使用无感知闪烁的用户友好型SSVEP BCI的可行性和潜力。
静默语音接口允许在没有声学语音信号的情况下进行语音通信。在这种应用中,使用在说话者脸上安装无线电天线的雷达感应可用作测量语音清晰度的非侵入式方式。这种方法的主要挑战之一是不同会话之间的差异性,主要是由于天线在说话者脸上的位置不同。为了减少这个影响因素的影响,我们开发了一种可穿戴耳机,它可以用柔性材料 3D 打印而成,重量仅为 69 克左右。为了进行评估,进行了一项基于雷达的单词识别实验,其中五位说话者在多个会话中录制了语音语料库,交替使用耳机和双面胶带将天线贴在脸上。通过使用双向长短期记忆网络进行分类,使用耳机和胶带分别获得了 76.50% 和 68.18% 的平均会话间单词准确率。这表明,使用耳机的天线(重新)定位精度并不比使用双面胶带的差,同时还具有其他优势。索引词:静音语音接口、可穿戴耳机、BiLSTM、雷达成像、语音相关生物信号
先进的脑成像分析方法,包括多元模式分析 (MVPA)、功能连接和功能对齐,在过去十年中已成为认知神经科学的有力工具。这些工具以自定义代码和单独的程序包实现,通常需要不同的软件和语言能力。虽然专家研究人员可以使用,但新手用户面临着陡峭的学习曲线。这些困难源于使用新的编程语言(例如 Python)、学习如何将机器学习方法应用于高维 fMRI 数据以及极少的文档和培训材料。此外,大多数标准 fMRI 分析包(例如 AFNI、FSL、SPM)侧重于预处理和单变量分析,在如何与高级工具集成方面存在空白。为了满足这些需求,我们开发了 BrainIAK (brainiak.org),这是一个开源 Python 软件包,它将几种尖端的、计算效率高的技术与其他 Python 包(例如 Nilearn、Scikit-learn)无缝集成,用于文件处理、可视化和机器学习。为了传播这些强大的工具,我们开发了用户友好的教程(Jupyter 格式;https://brainiak.org/tutorials/),以便更广泛地学习 BrainIAK 和 Python 中的高级 fMRI 分析。这些材料涵盖的技术包括:MVPA(模式分类和表征相似性分析);并行探照灯分析;背景连接;全相关矩阵分析;受试者间相关性;受试者间功能连接;共享响应建模;使用隐马尔可夫模型进行事件分割;以及实时 fMRI。对于长时间运行的作业或大内存需求,我们提供有关高性能计算集群的详细指导。这些笔记本已在多个站点成功测试,包括作为耶鲁大学和普林斯顿大学课程的问题集以及各种研讨会和黑客马拉松。这些材料是免费共享的,希望它们成为开源软件和教育材料池的一部分,用于大规模、可重复的 fMRI 分析和加速发现。
摘要简介:本研究探讨了数字讲故事工具对增强课堂上学生写作的影响。通过检查这些工具的有效性,该研究旨在提供有关其利益和改进领域的见解。方法论:这项研究是通过对高等教育学生进行的调查进行的。它专注于他们的满意度,遇到的困难以及对特定数字故事讲述工具的偏好。结果:研究结果表明,对数字故事的偏爱而不是传统写作技巧。学生赞扬了这些工具,以提高创造力,用户友好性以及使学习更具吸引力的能力。讨论:尽管有积极的反馈,但该研究确定了一些改进的领域。关键问题包括需要更高质量的图像,提高可用性以及降低对付费功能的依赖。结论:这些见解强调了数字故事在促进学生之间的创造力和参与方面的有效性。但是,它们还强调了进一步发展的机会,以最大程度地提高
我们习惯于听取解释。例如,如果有人觉得你今天很伤心,他们可能会用“因为你太难过了”来回答你的“为什么?”。然而,今天的人工智能(AI)——如果有的话——主要是以视觉或文本的方式提供决策的解释。虽然这种方法适合通过视觉媒体进行交流,例如在研究论文或智能设备的屏幕中,但它们可能并不总是最好的解释方式;尤其是当最终用户不是专家时。特别是,当人工智能的任务是音频智能时,视觉解释似乎不如可听的、声音化的解释直观。声音化在处理非音频数据的系统中对可解释人工智能(XAI)也具有巨大潜力——例如,因为它不需要用户的视觉接触或主动注意。因此,人工智能决策的声音化解释面临着一项具有挑战性但极具前景和开创性的任务。这涉及结合创新的 XAI 算法,以便指向负责 AI 决策的学习数据,并包括数据分解以识别突出方面。它进一步旨在识别负责决策的预处理、特征表示和学习注意模式的组成部分。最后,它以模型级决策为目标,为决策链提供整体解释
基于代码调制视觉诱发电位 (c-VEP) 的脑机接口 (BCI) 已实现了基于 EEG 的响应式通信系统。由于 BCI 目标具有自相关特性,因此通常使用二进制 m 序列对其进行编码;数字 1 和 0 对应不同的目标颜色(通常为黑色和白色),这些颜色会根据代码每帧更新一次。虽然二进制闪烁模式可以实现高速通信,但许多用户认为它们很烦人。五进制 (5 进制) m 序列(其中五个数字对应不同的灰度)可能会产生更微妙的视觉刺激。本研究探讨了两种减少闪烁感的方法:(1) 通过刷新率调整闪烁速度和 (2) 应用五进制代码。在这方面,使用八目标拼写应用程序测试了六种闪烁模式:以 60、120 和 240 Hz 刷新率生成的二进制模式和五进制模式。这项研究由 18 名非残障参与者进行。对于所有六种闪烁模式,都进行了一项复制拼写任务。根据问卷调查结果,大多数用户更喜欢建议的五进制模式而不是二进制模式,同时实现的性能与之相似(未发现两种模式之间的统计差异)。参与者的平均准确率超过 95%,所有模式和闪烁速度的信息传输速率均超过 55 位/分钟。
近年来的抽象背景,三维(3D)球体模型在科学研究中变得越来越流行,因为它们提供了一种与生理相关的微环境,可以模仿体内条件。与传统的二维细胞培养方法相比,它可以更好地了解3D球体测定法具有优势,因为它可以更好地了解细胞行为,药物功效和毒性。但是,使用3D球体测定法受到了用于球体图像分析的自动化和用户友好的工具的阻碍,这会对这些测定的可重复性和吞吐量产生不利影响。为解决这些问题的结果,我们开发了一种完全自动化的,基于Web的工具,称为Spheroscan,该工具使用了带有卷积神经网络(R-CNN)的名为“掩码区域”的深度学习框架进行图像检测和细分。为了开发一个可以从一系列实验条件中应用于球体图像的深度学习模型,我们使用使用Incucyte Live细胞分析系统和常规显微镜捕获的球体图像训练了该模型。使用验证和测试数据集对经过培训模型的性能评估显示出令人鼓舞的结果。结论Spheroscan允许轻松分析大量图像,并提供交互式可视化功能,以更深入地了解数据。我们的工具代表了球体图像分析的重大进步,并将促进科学研究中3D球体模型的广泛采用。可在https://github.com/funtionalurosology/spheroscan上获得有关Spheroscan的源代码和详细的Spheroscan教程。