● 幼儿期(0-7 岁):在这个成长阶段,大脑正在快速发育,特别是在语言、情绪调节和运动技能相关的领域。在此期间过度使用手机会影响感官和运动技能的发展以及面对面交流,而这些对于情感和社会成长至关重要。 ● 中童期(7-12 岁):这个时期孩子的认知和社交能力正在增强。过早接触手机可能会导致孩子过度依赖科技进行娱乐或交流,这可能会阻碍创造力、独立思考和社交技能的发展。 ● 青春期(13-18 岁):大脑在青春期经历重大重组,特别是在冲动控制、风险评估和情绪调节相关的领域。在此期间过早使用智能手机可能会导致负面的心理健康后果、上瘾行为和社交互动受损,因为青少年特别容易受到社交媒体和在线认可的压力。
虚拟鼠标控制器具有广泛的应用程序,尤其是在卫生和可访问性的环境中,例如在医疗环境,公共信息亭和交互式显示中。它还提供了传统输入设备的更符合人体工程学的替代方案,减少了应变并在扩展计算机使用过程中促进更健康的姿势。此外,可以对系统进行自定义以支持各种手势和个性化配置,从而适应各种用户和任务。通过增强残障人士的可及性并提供更直观的界面,虚拟鼠标控制器展示了基于手势的技术在革新人类计算机互动中的潜力,为日常计算和专业应用开辟了新的可能性。
1。斯坦福大学神经外科系2。Neurosurgery系,德克萨斯大学奥斯汀,奥斯汀,德克萨斯州奥斯汀 +这项工作主要在斯坦福大学进行。 3。 美国加利福尼亚州斯坦福大学斯坦福大学的霍华德·休斯医学院4. VA RR&D神经园艺与神经技术中心,康复研发服务,普罗维登斯VA医疗中心,美国RI,美国RI 5。 工程学院,布朗大学,美国普罗维登斯,美国,美国6。 Robert J.和Nancy D. Carney脑科学研究所,布朗大学,普罗维登斯,RI,美国7。 马萨诸塞州波士顿,马萨诸塞州马萨诸塞州马萨诸塞州医学院神经科学和神经记录中心,美国马萨诸塞州,美国马萨诸塞州8。 Wu Tsai神经科学学院,斯坦福大学,加利福尼亚州斯坦福大学,美国9。 Bio-X研究所,斯坦福大学,美国加利福尼亚州斯坦福大学Neurosurgery系,德克萨斯大学奥斯汀,奥斯汀,德克萨斯州奥斯汀 +这项工作主要在斯坦福大学进行。3。美国加利福尼亚州斯坦福大学斯坦福大学的霍华德·休斯医学院4.VA RR&D神经园艺与神经技术中心,康复研发服务,普罗维登斯VA医疗中心,美国RI,美国RI 5。工程学院,布朗大学,美国普罗维登斯,美国,美国6。 Robert J.和Nancy D. Carney脑科学研究所,布朗大学,普罗维登斯,RI,美国7。 马萨诸塞州波士顿,马萨诸塞州马萨诸塞州马萨诸塞州医学院神经科学和神经记录中心,美国马萨诸塞州,美国马萨诸塞州8。 Wu Tsai神经科学学院,斯坦福大学,加利福尼亚州斯坦福大学,美国9。 Bio-X研究所,斯坦福大学,美国加利福尼亚州斯坦福大学工程学院,布朗大学,美国普罗维登斯,美国,美国6。Robert J.和Nancy D. Carney脑科学研究所,布朗大学,普罗维登斯,RI,美国7。 马萨诸塞州波士顿,马萨诸塞州马萨诸塞州马萨诸塞州医学院神经科学和神经记录中心,美国马萨诸塞州,美国马萨诸塞州8。 Wu Tsai神经科学学院,斯坦福大学,加利福尼亚州斯坦福大学,美国9。 Bio-X研究所,斯坦福大学,美国加利福尼亚州斯坦福大学Robert J.和Nancy D. Carney脑科学研究所,布朗大学,普罗维登斯,RI,美国7。马萨诸塞州波士顿,马萨诸塞州马萨诸塞州马萨诸塞州医学院神经科学和神经记录中心,美国马萨诸塞州,美国马萨诸塞州8。Wu Tsai神经科学学院,斯坦福大学,加利福尼亚州斯坦福大学,美国9。 Bio-X研究所,斯坦福大学,美国加利福尼亚州斯坦福大学Wu Tsai神经科学学院,斯坦福大学,加利福尼亚州斯坦福大学,美国9。Bio-X研究所,斯坦福大学,美国加利福尼亚州斯坦福大学
(1)比利时迪彭贝克(Diepenbeek)3590的Hasselt University的生物医学研究所MS中心(生物医学研究所)。(2)Hasselt University,Agoralaan大楼D数据科学研究所(DSI),3590,Diepenbeek,比利时。 (3)D -LAB,荷兰马斯特里赫特大学马斯特里赫特大学的肿瘤学研究所精密医学系D -LAB。 (4)荷兰马斯特里赫特大学医学中心的肿瘤学和发育生物学研究所放射学和核成像系,荷兰马斯特里奇。 (5)比利时安特卫普大学安特卫普大学IMEC-Vision Lab。 (6)𝜇神经研究中心,比利时安特卫普大学,安特卫普大学。 (7)Sumo Group,idlab,根特大学-IMEC,根特,比利时。 (8)比利时Ku Leuven的Esat-Stadius。 (9)noorderhart,康复和比利时Pelt MS中心。 (10)荷兰Sittard-Geleen Zuyderland Medical Center神经病学系学术中心Zuyd。 (11)荷兰马斯特里赫特马斯特里赫特大学的心理健康与神经科学学院。 *=这些作者对这项工作同样贡献了对应作者= Philippe Lambin(philippe.lambin@maastrichtuniverity.nl)(2)Hasselt University,Agoralaan大楼D数据科学研究所(DSI),3590,Diepenbeek,比利时。(3)D -LAB,荷兰马斯特里赫特大学马斯特里赫特大学的肿瘤学研究所精密医学系D -LAB。(4)荷兰马斯特里赫特大学医学中心的肿瘤学和发育生物学研究所放射学和核成像系,荷兰马斯特里奇。(5)比利时安特卫普大学安特卫普大学IMEC-Vision Lab。(6)𝜇神经研究中心,比利时安特卫普大学,安特卫普大学。 (7)Sumo Group,idlab,根特大学-IMEC,根特,比利时。 (8)比利时Ku Leuven的Esat-Stadius。 (9)noorderhart,康复和比利时Pelt MS中心。 (10)荷兰Sittard-Geleen Zuyderland Medical Center神经病学系学术中心Zuyd。 (11)荷兰马斯特里赫特马斯特里赫特大学的心理健康与神经科学学院。 *=这些作者对这项工作同样贡献了对应作者= Philippe Lambin(philippe.lambin@maastrichtuniverity.nl)(6)𝜇神经研究中心,比利时安特卫普大学,安特卫普大学。(7)Sumo Group,idlab,根特大学-IMEC,根特,比利时。(8)比利时Ku Leuven的Esat-Stadius。(9)noorderhart,康复和比利时Pelt MS中心。(10)荷兰Sittard-Geleen Zuyderland Medical Center神经病学系学术中心Zuyd。(11)荷兰马斯特里赫特马斯特里赫特大学的心理健康与神经科学学院。*=这些作者对这项工作同样贡献了对应作者= Philippe Lambin(philippe.lambin@maastrichtuniverity.nl)
防雷 Sol Mate® 必须在配备现有防雷系统的建筑物的保护区内运行,并且必须遵守所需的间隔距离(参见 EN 62305 或 VDE 0185- 305)。这意味着 Sol Mate® 及其组件(包括电缆)必须与避雷针、雨水落水管和其他接地金属部件保持足够的距离。额外的防雷措施取决于具体的当地和结构条件,可由防雷专家确定(通常合格的电工具备此专业知识)。如果 Sol Mate® 及其组件在具有足够间隔距离的保护区内运行,则无需采取进一步的防雷措施。如果没有建筑物防雷措施,请确保 Sol Mate® 及其组件(包括电缆)未放置在建筑物的裸露部分。所有 Sol Mate® 组件与地面的距离应尽可能小,并应最短电缆长度。如果电缆长度超过 10 米,则必须在电缆进入建筑物的地方安装 1 级 SPD(浪涌保护装置)。当地合格的电工可以在这方面提供建议和帮助。
摘要计算机应用程序的进步已经越来越促进了日常任务,最近的创新集中在语音助手和虚拟输入设备上。该技术对具有移动性挑战的个体或直接手动计算机交互的情况有限。利用计算机视觉和人工智能,这些应用程序可以解释视觉数据,例如人类运动,并决定执行相应的命令。本研究结合了语音助手,虚拟鼠标和虚拟键盘,以增强可访问性和可用性,特别是对于身体残疾人或喜欢替代输入方法的人。使用Python,MediaPipe和OpenCV,该应用程序有效地处理和解释用户手势,提供响应迅速,有效的计算体验。MediaPipe的功能特别有助于模型的精确度,优化了对AI驱动任务的手动跟踪和手势识别。用户可以通过各种手势来控制计算机光标,使用彩色盖或磁带在虚拟键盘上键入,并执行诸如左键单击和拖动项目之类的基本操作。这种集成的解决方案旨在提高生产率,使计算机更容易访问并增强用户的整体数字体验。在此类应用中,AI和计算机视觉的融合继续推动了创新和包容性的计算解决方案,并承诺在人类计算机互动中具有更大的可访问性和便利性的未来。
PPR 模拟允许您做出战略决策,以控制 PPR(小反刍动物疫病)在小反刍动物群体中的传播。通过选择疫苗接种和响应时间,您可以努力控制疫情并保护畜群健康。您的目标是最大限度地降低感染率,保持畜群免疫力,并了解 PPR 对畜群和经济健康的影响。
摘要。零射击学习(ZSL)是一种机器学习范式,使模型能够从培训期间未遇到的类中识别和分类数据。这种方法在识别标记数据受到限制的活动方面尤其重要,允许模型通过利用所见活动的语义知识来识别新的,看不见的活动。在本文中,我们探讨了ZSL使用句子 - 伯特(S-bert)用于语义式床位和变异自动编码器(VAE)的功效,以弥合可见阶级和看不见的类之间的差距。我们的方法利用腕部惯性的惯性事件来捕获活动数据,并采用S-Bert生成偶然的嵌入,以促进可见和看不见的活动之间知识的转移。评估是在包含三个看见和三个看不见的活动类别的数据集上进行的,平均持续时间为2秒,三个看见和三个看不见的活动类别,平均持续时间为7秒。结果表明,在识别看不见的活动时表现出了有希望的表现,平均持续时间为7秒的活动的准确性为0.84,而活动的平均持续时间为0.66,平均持续时间为2秒。这突出了ZSL对增强活动识别系统的潜力,这对于在医疗保健,人类计算机互动和智能环境等领域的应用至关重要,在这些领域中,识别广泛的活动至关重要。
HFMD和肠道菌群之间的关系引起了人们越来越多的关注。Current research has demonstrated that children with HFMD exhibit significant dysbiosis in their gut microbiota, characterized by a decrease in overall gut microbial diversity, accompanied by a reduced abundance of butyrate-producing bacterial genera (e.g., Bifidobacterium , Ruminococcus , and Roseburia ), and an increased presence of opportunistic pathogenic bacteria (e.g.,大肠杆菌和肠球菌(4-6)。随着传统中药(TCM)在消化道疾病(7,8)的治疗(TCM灌肠疗法)中,涉及将药物溶液直接施用到直肠中以应用肠道粘膜吸收性,已作为有效的治疗方法出现(9)。 考虑到通过潜在的副作用(包括过敏反应),通过静脉内途径进行TCM注射是有争议的,因此已经发现直肠给药通常会导致更少的过敏反应,并且被认为更安全。 重新注射,一种由金银花,阿耳震和garden虫组成的现代TCM配方,以其排毒,清除和防风效应而被认可(10)。 在这项研究中,我们旨在评估HFMD儿童肠道菌群的重新灌肠灌肠的调节作用,为其在治疗中的应用提供基础。 我们涉及将药物溶液直接施用到直肠中以应用肠道粘膜吸收性,已作为有效的治疗方法出现(9)。考虑到通过潜在的副作用(包括过敏反应),通过静脉内途径进行TCM注射是有争议的,因此已经发现直肠给药通常会导致更少的过敏反应,并且被认为更安全。重新注射,一种由金银花,阿耳震和garden虫组成的现代TCM配方,以其排毒,清除和防风效应而被认可(10)。在这项研究中,我们旨在评估HFMD儿童肠道菌群的重新灌肠灌肠的调节作用,为其在治疗中的应用提供基础。我们
