摘要 可以使用侵入性方法监测脑血流 (CBF) 自身调节 (AR),例如颅内压 (ICP) 和动脉血压 (ABP),以计算 CBF AR 指数 (PRx)。监测 PRx 可以减少患者继发性脑损伤的程度。脑血流图 (REG) 是一种经 FDA 批准的测量 CBF 的非侵入性方法。REGx 是一种 CBF AR 指数,是根据 REG 和手臂生物阻抗脉冲波计算得出的。我们的目标是测试 REG 的神经监测效果。对 13 名神经重症监护患者进行了 28 次测量。使用生物阻抗放大器和定制软件在笔记本电脑上记录 REG/手臂生物阻抗波形。同一程序用于离线数据处理。病例 #1:患者平均 REGx 从第一天的 -0.08 增加到第二天的 0.44,表明颅内顺应性 (ICC) 恶化 (P < 0.0001,CI 0.46–0.58)。两天的格拉斯哥昏迷量表 (GCS) 均为 5。病例 #2:REGx 从第一次记录的 0.32 降低到最后一次记录的 0.07 (P = 0.0003,CI -0.38 至 -0.12)。GCS 分别为 7 和 14。病例 #3:在 36 分钟的记录中,REGx 从 0.56 降低到 -0.37 (P < 0.0001,95%,CI -1.10 至 -0.76)。中心静脉压从 14 mmHg 变为 9 mmHg。 REG 脉搏波形态从 ICC 较差变为 ICC 形态良好。生物阻抗记录可以量化 CBF AR 的主动/被动状态,指示 ICC 的恶化并实时呈现。REGx 可以作为 PRx 的合适、非侵入性替代方案,用于头部受伤患者。
Azhari, A., Truzzi, A., Neoh, MJ-Y., Balagtas, JPM, Tan, HH, Goh, PP, … Esposito, G. (2020)。婴儿神经影像学研究的十年:我们学到了什么,我们将继续前进吗?婴儿行为与发展,58,101389。https://doi.org/10.1016/j.infbeh.2019.101389 Bagic, AI、Knowlton, RC、Rose, DF、Ebersole, JS 和 ACMEGS 临床实践指南 (CPG) 委员会。(2011)。美国临床脑磁图学会临床实践指南 1:自发性脑活动的记录和分析。临床神经生理学杂志, 28 (4), 348 – 354。https://doi.org/10.1097/WNP。0b013e3182272fed Ballard, A., Le May, S., Khadra, C., Filoa, JL, Charette, S., Charest, M.-C., … Tsimicalis, A. (2017)。分心工具包用于急诊科接受疼痛手术的儿童疼痛管理:一项初步研究。疼痛管理护理, 18 (6), 418 – 426。https://doi. org/10.1016/j.pmn.2017.08.001 Bell, MA, & Cuevas, K. (2012)。使用 EEG 研究认知发展:问题与实践。认知与发展杂志, 13 (3), 281 – 294。https://doi.org/10.1080/15248372.2012。691143 Birg, L., Narayana, S., Rezaie, R., & Papanicolaou, A. (2013)。技术提示:镇静状态下的 MEG 和 EEG。神经诊断杂志, 53 (3), 229 – 240。https://doi.org/10.1080/21646821.2013.11079909 Bosseler, AN, Clarke, M., Tavabi, K., Larson, ED, Hippe, DS, Taulu, S., & Kuhl, PK (2021)。使用脑磁图检查 14 个月大婴儿的单词识别、侧化和未来语言技能。发育认知神经科学,47,100901。https://doi.org/10.1016/j.dcn.2020.100901 Bowyer, SM、Zillgitt, A.、Greenwald, M. 和 Lajiness-O'Neill, R. (2020)。使用脑磁图进行语言映射:临床研究和实践现状更新以及临床实践指南的考虑。临床神经生理学杂志,37 (6),554 – 563。https://doi.org/10.1097/wnp.0000000000000489
阅读理解是一个复杂的认知过程,涉及许多人的大脑活动。然而,人们对阅读理解过程中人脑中发生了什么以及这些认知活动如何影响信息检索过程知之甚少。此外,随着脑电图(EEG)等脑成像技术的进步,可以几乎实时地收集脑信号并探索是否可以将其用作反馈以促进信息获取。在本文中,我们精心设计了一项基于实验室的用户研究,以调查阅读理解过程中的大脑活动。我们的研究结果表明,神经反应因不同类型的阅读内容而异,即可以满足用户信息需求的内容和不能满足用户信息需求的内容。我们认为,在阅读理解的微观时间尺度上,各种认知活动(例如认知负荷、语义主题理解和推理处理)支撑着这些神经反应。从这些发现中,我们为信息检索任务阐明了一些见解,例如排名模型构建和界面设计。此外,随着便携式EEG应用的出现,我们提出了为主动现实世界系统检测阅读理解状态的可能性。为此,我们提出了一个基于EEG的阅读理解建模统一框架(UERCM)。为了验证其有效性,我们基于EEG特征对两个阅读理解任务进行了广泛的实验:答案句子分类和答案提取。结果表明,利用脑信号提高这两项任务的表现是可行的。这些发现意味着脑信号是增强阅读理解过程中人机交互的宝贵反馈。
摘要:大脑结构形态随衰老轨迹而变化,利用大脑形态特征预测人的年龄有助于检测异常衰老过程。基于神经影像学的大脑年龄被广泛用于量化个人大脑健康状况与正常大脑衰老轨迹的偏差。机器学习方法正在扩大准确预测大脑年龄的潜力,但由于机器学习算法种类繁多,因此具有挑战性。在这里,我们旨在比较使用从结构磁共振成像扫描中获得的大脑形态测量值来估计大脑年龄的机器学习模型的性能。我们评估了 27 种机器学习模型,应用于来自人类连接组计划 (HCP,n = 1113,年龄范围 22-37)、剑桥衰老和神经科学中心 (Cam-CAN,n = 601,年龄范围 18-88) 和图像信息提取 (IXI,n = 567,年龄范围 19-86) 的三个独立数据集。使用交叉验证和未见过的测试集评估每个样本的性能。对于 HCP、Cam-CAN 和 IXI 样本,这些模型的平均绝对误差分别为 2.75–3.12、7.08–10.50 和 8.04–9.86 岁,预测大脑年龄与实际年龄之间的皮尔逊相关系数分别为 0.11–0.42、0.64–0.85 和 0.63–0.79。我们发现在同一数据类型上训练的模型之间的性能存在显著差异,这表明模型的选择会导致大脑预测年龄的巨大差异。此外,在三个数据集中,正则化线性回归算法的性能与非线性和集成算法相似。我们的结果表明,正则化线性算法在大脑年龄预测方面与非线性和集成算法一样有效,同时显著降低了计算成本。我们的研究结果可以作为未来使用机器学习模型应用于大脑形态数据来改善大脑年龄预测的起点和定量参考。
MBR基地 “光”给药研究基地 教育愿景研究中心 广岛大学为拯救下一代而创造“绿色革命”的植物研究基地 智能生物传感融合研究基地 日本食品和发酵食品创新研发基地 - 日本食品功能性开发中心 - 可立即应对紧急放射线照射的再生医疗研究基地
摘要:利用左右脑优势理论可以确定左脑和右脑人群的一些特征。它可以帮助制定大脑平衡教育主题的培训大纲。在执行任何动作时,人的注意力或专注力至关重要。本文将使用脑电图 (EEG) 数据检查左脑和右脑优势患者的注意力水平。可以使用 EEG 波跟踪和记录大脑活动。人脑的思考和注意力会导致脑电波在不同频带中改变。可以使用基线校正方法清理基于频率的 EEG 信号并提取特征。结果,创建了 EEG 拓扑功率谱密度值。本文的主要目的是比较不同大脑优势的人的注意力水平。相反,EEG 信号可用于预测一个人是左脑还是右脑优势。
摘要 — 上下班是许多人的日常活动,对我们的健康有重大影响。定期通勤可能导致慢性压力,而慢性压力与心理健康不佳、高血压、心率过快和疲惫有关。本研究通过分析脑电波和应用机器学习,实时调查通勤对神经生理和心理的影响。参与者是平均年龄 30 岁的健康志愿者。获取便携式脑电图 (EEG) 数据作为压力水平的衡量标准。在每位参与者上下班途中,使用非侵入式 NeuroSky MindWave 耳机连续 5 次获取 EEG 数据。这种方法可以在通勤期间和之后测量影响。结果表明,无论通勤时间长短,当参与者处于平静或放松状态时,生物信号 alpha 波段超过 beta 波段,而当参与者因通勤而感到压力时,beta 波段高于 alpha 波段。使用前馈神经网络取得了非常有希望的结果,准确率达到 97.5%。这项工作的重点是开发一种智能模型,帮助预测通勤对参与者的影响。此外,从积极和消极情绪时间表获得的结果还表明,参与者在通勤后会经历相当大的压力上升。对于社会行为背后的认知和语义过程的建模,最近的大多数研究项目仍然基于个人,而我们的研究则侧重于将群体作为一个完整群体来处理的方法。这项研究记录了通勤者的体验,特别关注远程医疗传感器中新兴计算技术的使用和局限性。
摘要:早期检测和分类癫痫发作对计算机辅助设备和最新医疗物联网 (IoMT) 设备的分析、监测和诊断大有裨益,这一点怎么强调也不为过。这些应用的成功在很大程度上取决于所采用的检测和分类技术的准确性。多年来,人们研究、提出和开发了多种方法。本文研究了过去十年的各种癫痫发作检测算法和分类,包括传统技术和最新的深度学习算法。它还讨论了癫痫样检测作为实现意识障碍 (DOC) 高级诊断及其理解的步骤之一。对所研究的不同算法进行了性能比较,并探讨了它们的优缺点。从我们的调查来看,最近人们非常关注探索深度学习算法在癫痫发作检测和分类中的有效性,这些算法还用于图像处理和分类等其他领域。混合深度学习也得到了探索,其中 CNN-RNN 最受欢迎。
㉳⬻Ἴ䛿Ⓨヰ⬻Ἴ䛸䛿␗䛺䜚䠈ṇ☜䛺㉳้䛜 ᫂░䛷䛒䜛䛸䛔䛖ၥ㢟䛜䛒䜛䠊䛭䛣䛷䠈ᅗ 2 䛾㘓䝥䝻䝖䝁䝹䛻䛚 䛔䛶䠈⿕㦂⪅䛿⣧㡢䛜㬆䜚⤊䜟䛳䛯┤ᚋ䛻㉳䜢㛤ጞ䛧䛶䛔䜛 䛸௬ᐃ䛧䠈 1 ༢ㄒ䛾㉳㛫䜢 400ms 䛸⪃䛘䠈 0-400ms( ⣧㡢┤ ᚋ :0ms) 䜢ゎᯒ༊㛫䛸䛩䜛䠊 3.2 ⠇䛷ㄝ᫂䛧䛯 6 䛴䛾≉ᚩ㔞䛩䜉 䛶䜢⏝䛔䛯䛯䜑䠈ධຊḟඖᩘ䛿䠈 ( ⥺䝇䝨䜽䝖䝹௨እ䛾 5 䛴䛾≉ ᚩ㔞㽢 21ch 䠇⥺䝇䝨䜽䝖䝹 25 ḟඖ ) 㽢 2( ᖹᆒ䛸ᶆ‽೫ᕪ ) 䛾 260 ḟඖ䛷䛒䜛䠊 10 ྡ䛾⿕㦂⪅䛾ᖹᆒṇゎ⋡䜢ᅗ 6 䛾䛂 0- 400ms ༊㛫䛃䛻♧䛩䠊ᅗ 6 䜘䜚䠈ṇゎ⋡䛿 20% 䜋䛹䛷䛒䜚䠈ㄆ㆑ 䛷䛝䛶䛔䛺䛔䛣䛸䛜䜟䛛䜛䠊 ṇゎ⋡䛜ప䛔ཎᅉ䛾୍䛴䛸䛧䛶䠈ṇ☜䛺㉳༊㛫䛜≉ᐃ䛷 䛝䛶䛔䛺䛔Ⅼ䛜ᣲ䛢䜙䜛䠊䛭䛣䛷䠈㉳⬻Ἴ䛸ྠ䛨䝥䝻䝖䝁䝹 䛷㘓䛧䛯Ⓨヰ⬻Ἴ䛻╔┠䛧䛯䠊ྠ䛨䝥䝻䝖䝁䝹䛷㘓䛧䛶 䛔䜛䛣䛸䛛䜙䠈Ⓨヰ䛸㉳䛾㛤ጞ้䜔⥅⥆㛫䛿ᴫ䛽୍⮴䛩 䜛䛸௬ᐃ䛧䛯䠊䛭䛧䛶Ⓨヰ㛫䜢䜒䛸䛻ゎᯒ༊㛫䜢Ỵᐃ䛩䜜䜀䠈 ㉳༊㛫䛷䛾ㄆ㆑ᐇ㦂䛜⾜䛺䛘䜛䛿䛪䛷䛒䜛䠊௨ୖ䛾䛣䛸䛛䜙䠈 Ⓨヰ⬻Ἴ䜢㘓䛧䛯㝿䛻㘓㡢䛧䛯㡢ኌ䝕䞊䝍䛛䜙ྛ⿕㦂⪅ 䛾ᩘᏐ䛤䛸䛾Ⓨヰ㛫䜢⟬ฟ䛩䜛䠊 ⿕㦂⪅䛤䛸䛾Ⓨヰ㛤ጞ㛫䛾ᖹᆒ䜢ぢ䛶䜏䜛䛸䠈䛹䛾⿕㦂⪅ 䜒 250ms ௨㝆䛻Ⓨヰ䜢㛤ጞ䛧䛶䛚䜚䠈⣧㡢䛾㬆䜚⤊䜟䜚┤ᚋ䛻 Ⓨヰ䜢㛤ጞ䛧䛶䛔䜛⿕㦂⪅䛿䛔䛺䛛䛳䛯䠊䜎䛯䠈⿕㦂⪅䛻䜘䛳 䛶㛤ጞ㛫䛿␗䛺䛳䛶䛔䛯䠊䛥䜙䛻䠈ྠ䛨ᩘᏐ䛻䛚䛡䜛⿕㦂⪅ 䛤䛸䛾Ⓨヰ⥅⥆㛫䛾ᖹᆒ䜢ぢ䛶䜏䜛䛸䠈䛣䛱䜙䜒⿕㦂⪅䛻䜘䛳 䛶␗䛺䜛䛣䛸䛜䜟䛛䛳䛯䠊䛣䛾⤖ᯝ䛛䜙䠈ゎᯒ༊㛫䛸䛧䛶䛔䛯 0- 400ms 䛿ᐇ㝿䛾㉳༊㛫䛸䛝䛟␗䛺䛳䛶䛔䜛ྍ⬟ᛶ䛜㧗䛔䠊 䜘䛳䛶䠈㉳䛾ゎᯒ༊㛫䜢ྛ⿕㦂⪅䛾༢ㄒ䛤䛸䛾Ⓨヰ㛤ጞ 㛫䛸⤊㛫䜢䜒䛸䛻ኚ᭦䛧䠈ᨵ䜑䛶㡢ኌ㉳༢ㄒㄆ㆑ᐇ㦂 䜢⾜䛖䠊
脑机接口 (BCI) 是一个研究脑电图信号以增进我们对人类大脑理解的研究领域。BCI 的应用不仅限于脑电波的研究,还包括其应用。对车辆驾驶员特定情绪的研究有限,且尚未得到广泛探索。本研究使用脑电图信号对驾驶员的情绪进行分类。本研究旨在通过分析脑电图信号来研究驾驶模拟车辆时的情绪分类(惊讶、放松/中立、专注、恐惧和紧张)。实验在模拟环境中以两种条件进行,即自动驾驶和手动驾驶。在自动驾驶下,车辆控制被禁用。在手动驾驶下,受试者能够控制转向角、加速度和制动踏板。在实验过程中,受试者的脑电图数据被记录下来,然后进行分析。