锂离子电池(LIB)的独特特征,例如它们的长寿命和高能量密度特征,已促进了它们的全球知名度,并巩固了其作为从便携式电子设备到电动汽车的各种应用的最重要电源的地位。1 - 3液体仍然是消费电子产品和电动汽车中最广泛的电源,甚至是20 - 25年。4,5每年对LIB的需求已达到700 GWH,预计到2030年将攀升至空前的4.7 TWH。6 libs通常包含基于李的阴极(LiCoo 2,Limn 2 O 4,Lini X Mn Y Co Z O 2,Lini X Co Y Al Z O 2,LifePo 4),阳极(石墨),电解质(有机溶剂中的LIPF 6)和分离剂(聚丙烯或多乙烯)。7基于Li的阴极是Libs的关键组成部分;
摘要:由于电动汽车和便携式电子设备的繁荣,高能存储设备的全球市场规模不断增加,导致电池工业生产了许多废物锂离子电池。阴极材料的解放和消除型是改善从支出的锂离子电池中得出的回收的必要程序,并启用了直接回收途径。在这项研究中,基于促进与粘合剂和二甲基亚氧化二甲基(DMSO)共溶性的相互作用,超临界(SC)CO 2具有创新的适应性以使用过的锂离子电池(LIB)回收。结果表明,解放阴极颗粒的最佳实验条件是在70℃的温度和80 bar压力下处理20分钟。在处理过程中,将聚乙烯氟(PVDF)溶解在SC流体系统中,并收集在二甲基亚氧化二甲基亚氧化二甲基(DMSO)中,如傅立叶变换红外光谱仪(FTIR)所检测到的。在最佳条件下,阴极的释放产量达到了96.7%,因此,阴极颗粒分散到较小的片段中。之后,可以将PVDF沉淀和重复使用。此外,在建议的过程中,由于粘合剂分解而没有氟化氢(HF)气体发射。建议的SCO-CO 2和共溶性系统有效地将PVDF与锂离子电池电极分开。因此,由于其效率,相对较低的能耗和环境良性特征,这种方法是一种替代性预处理方法。
摘要:这项研究检查了使用不同水性的咖啡渣的利用,该咖啡园具有不同的水性训练方法,用于从沿海底栖沉积物通过沉积物微生物燃料电池(SMFC)系统的生物电力产生。评估了SCG水性提取的不同方法,包括冲洗和干燥SCG(SMFC-CRD),浸入,冲洗和干燥(SMFC-CRID),单独干燥(SMFC-CD)和未经处理的SCG(SMFC-C)(SMFC-C)。使用预处理可显着降低SCG中的咖啡因浓度,而SMFC-Crid达到了最低浓度为0.021±0.001 mg/g。SMFC-CRD在闭路运行过程中导致了213.7 mA/m 2的最高电流密度的产生,并且在SCG中的咖啡因含量合适的咖啡因含量为0.275±0.001 mg/g,在极化测试中表现出96.9 mW/m 2的最高功率密度。这项研究可以提供一种具有成本效益的方法来重用SCG(即128 g),同时产生生物电度作为替代能源。这些结果表明,使用SCG进行预处理对于达到最佳功率密度和降低SMFC系统中的咖啡因浓度至关重要。
花费的咖啡渣(SCG)代表了具有功能潜力的食物浪费,全球生产高。scg源自咖啡酿造,主要由不溶性物质组成,并且仍然需要不同的努力来寻找其价值的创新过程。在这项工作中,利用了不同的方法(包括物理铣削和微波辅助提取,MAE)和生物学(优化的酶辅助提取,EAE),以溶解被捕获在丰富光纤网络中的化合物。MAE导致最高浓度的可溶性纤维和寡糖,从而溶解了不溶性纤维。通过使用MAE和EAE组合使用MAE和EAE,由于高纤维水解为单糖(高达17 g/100g),可溶性黑色素蛋白(高达72 mg/g)和咖啡酸(高达2.22 mg/g),总可溶性增加了几乎8倍。该提取物还具有最高抗氧化电位的表征,这些抗氧化电位表明了COM固定过程的积极影响。EAE促进了SCG提取物中养分的释放,这些含量被选定的益生菌乳脂型LP19用作生长的释放。这项工作表明了如何使用不同的技术及其组合来量化SCG,以证明获得新型SCG衍生功能成分和/或产品的可能性。
如果您的业务活动是制造或供应新的、从未使用过的铅酸电池,并且您符合《回收法规》中生产商的定义,则本指南适用于您。要成为生产商,您必须是《回收法规》第 2 部分下经批准的延伸生产者责任计划的良好成员,或满足《回收法规》第 3 部分下的所有要求。在什么情况下,使用过的或报废的铅酸电池被视为危险废物?
ATCC衍生的SF9父母细胞系被解冻并传递,直到在适应SFRV减少的培养条件之前恢复到正常条件下恢复。通过在细胞颗粒和用过的培养基上进行基于反向转移酶(RT)PCR的测定法,常规监测培养物的生长和生存力,以及对SFRV信号的日志还原。降低SFRV 4周后,将所得培养物被镀至96孔板,而用过的培养基(未检测到RV信号后,确定的RV-无RV)用于促进克隆的生长。
园艺是致力于生产营养和高质量作物的重要全球部门。但是,其维持高收益率的能力取决于有效的受精和疾病控制方法,这引起了环境挑战,例如温室气体排放,富营养化以及广泛使用合成肥料和pesti cides。欧盟(EU)立法强烈主张合成投入的减少并促进替代策略(农场到叉子战略,2022年)。园艺的另一个问题是依赖泥炭作为主要生长媒介。虽然欧洲园艺主义者广泛偏爱泥炭泥炭,因为它具有可负担性和有利的特性,例如保留水和养分交换(Owen,2007),其使用及其不可再生本质的环境影响呈现出明显的劣势。为了减少泥炭依赖的替代媒体的追求不仅是环境的命令,而且还与欧盟立法保持一致(Owen,2007)。在追求循环经济时,农业食品行业具有宝贵的资源,有可能应对与可持续性有关的重大挑战。这些领域内的生物量生产可以被价值并重新用于必不可少的产品。例如,培养白蘑菇(agaricus bisporus)和牡蛎蘑菇(胸膜骨化剂),例如产生大量的收获后副产品,即用过的白色蘑菇堆(SMC)和花费的牡蛎蘑菇蜂房底物(SOS)。欧洲牡蛎蘑菇的生产被认为低于白色每公斤栽培的白色蘑菇,生成约2.5 - 5千克的SMC(Sample等,2001)。欧洲每年生产超过300万吨SMC(García-Delgado等,2013),对蘑菇行业提出了不断升级的环境关注,并强调了这种有机废物的可持续解决方案的紧迫性。
花费的铅酸电池(EWC 160601)受欧盟电池指令的监管及其对电池寿命管理的国家立法的收养。用过的铅酸电池在铅炼油厂(二次铅冶炼厂)中回收。耗尽的铅酸电池的组件被回收或重新处理。在销售点,电池的制造商和进口商分别将金属经销商收回了用过的电池,并将其渲染到二级铅冶炼厂进行处理。为了简化收集和回收或后处理过程,不得将铅酸电池与其他电池混合。绝不可以以短矫正方式清空电解质(稀释电解质酸)。此过程仅由加工公司执行。
据估计,仅考虑铝,钴,镍和锂,在2030年,每年可以在每年400至5亿欧元之间恢复400至5亿欧元。还估计,在2025年,用过的电池将构成约800 000