多年来,通过 CRISPR 技术,斑马鱼、果蝇和秀丽隐杆线虫的定向诱变技术得到了显著改进。通过在体内诱导小的靶向突变,CRISPR 使研究人员能够有效地检查细胞通路。虽然这些突变通常是随机插入或缺失 (indel),但如果 CRISPR 组件设计得当,它们通常会导致靶基因的功能性破坏。但是,当前用于识别 CRISPR 生成的插入/缺失的协议通常需要大量劳动力、耗时或成本高昂。在这里,我们描述了一种直接、高通量的方法,用于通过使用片段分析仪平台来识别突变的存在,该平台允许通过高分辨率毛细管凝胶电泳进行 DNA 片段大小测定。按照该协议,可以快速可靠地识别小的插入/缺失(少至 2 个碱基对),从而可以对新生成的或稳定的突变系进行大规模基因分型。
高阶马尔可夫连锁店(HOMC)是基于过渡概率的常规模型,美国农业部(USDA)国家农业统计局(NASS)使用,随着时间的推移研究农作物旋转模式。但是,由于分类数据表示为指示器(或虚拟)变量,因此请与稀疏性和识别能力问题相称。实际上,参数空间的维度与分析所需的人类所需的顺序相吻合。虽然简约的表示减少了参数的数量,如文献所示,但它们通常会导致预测较少。大多数简约的模型都经过大数据结构的培训,可以使用替代算法对其进行压缩并有效处理。因此,使用新的HOMC算法和在一系列农业条件上进行的深层神经网络(DNN)进行了彻底评估和比较,以确定哪种模型最适合于运营农作物特定土地涵盖美国农业(US)农业。在本文中,在2011年至2021年之间,六个神经网络模型从六个农业强化县进行了作物旋转数据,这些县反映了中西部和美国南部种植的主要农作物的范围以及各种农作物旋转模式。六个县包括:北达科他州的伦维尔;内布拉斯加州珀金斯;德克萨斯州黑尔;伊利诺伊州利文斯顿;伊利诺伊州麦克莱恩;和俄亥俄州的谢尔比。结果表明,DNN模型在2021年获得所有县的总体预测准确性较高。所提出的DNN模型允许摄入长时间序列数据,并且比被认为预测美国特定农作物特定土地覆盖的新的HOMC算法可鲁棒地实现更高的精度值。
重要提示:本文所述德州仪器公司及其子公司的产品和服务均受 TI 标准销售条款和条件的约束。建议客户在下订单前获取有关 TI 产品和服务的最新、最完整信息。TI 对应用程序协助、客户应用程序或产品设计、软件性能或专利侵权不承担任何责任。发布有关任何其他公司产品或服务的信息并不构成 TI 对其的批准、保证或认可。
摘要:由于高质量转移效率和低碳排放的优势,膜生物膜反应器(MBFR)在废水处理领域吸引了越来越多的关注。有许多因素影响其氮去除能力,例如操作时间,电子供体类型和操作模式。操作时间与微生物的生长状态直接相关,因此了解不同操作时间对微生物组成和社区继承的影响非常重要。在这项研究中,在第30天和操作的第60天进行了研究,并研究了两个基于H 2的MBFR,并且微生物组成,社区演替的差异,NO 3 - -N删除效率。运行时间为60天的MBFR的氮去除效率高于MBFR的运行时间30天。蛋白杆菌是两个MBFR中的主要门。但是,微生物群落的组成截然不同。在班级层面上,两个MBFR之间的蛋白杆菌的社区组成相似。α型杆菌是MBFR中的主要类别,betaproteobacteria和gammaproteobacteria也占很高比例。结合了微生物相对丰度和浓度的分析,在第30天和第60天,MBFR中微生物分布的相似性非常低,并且前50个主要的普遍细菌和蛋白质细菌的系统发育关系不同。因此,操作时间对微生物组成和社区继承产生了显着影响。尽管微生物浓度随着操作时间的延长而降低,但特定功能微生物的微生物丰度和多样性进一步增加。
Marigold(Tagetes Erecta L.)是该家族的一种流行的astreaceae植物,通常在包括印度在内的许多国家 /地区都因其装饰性而种植。植物在各种土壤和气候条件下很容易生长,并据报道会损害土壤的线虫种群并间接控制有害的微生物。高性能薄层色谱(HPTLC),以鉴定有两个万寿菊品种Pusa Narangi Gainda(PNG)和Pusa Basanti Gainda(PBG)的植物和叶子中一些重要的生物学活性化合物。使用硅胶薄层色谱法(TLC)板和甲苯和乙酸乙酯 - 甲酸 - 甲酸(T-E-F)(T-E-F)(13:11:2 v/v/v)进行定量分析。。结果表明,叶片中的化合物比流体更多,并且品种PNG比PBG积聚了更多的化合物。十五酸。但是,在品种PBG的流中发现了最大值。咖啡酸和槲皮素,而仅在叶片中仅检测到P-奶酪酸,仅在品种PNG的流中检测到Kaempferol。本报告中产生的信息可能有意义地用于促进对万寿菊作为抗氧化剂,杀虫剂,除草剂等自然来源的研究。
本研究采用定向能量沉积(DED)工艺来增材制造钴铬合金材料,该材料常用于模具、牙科/骨科医疗应用、车辆和飞机。利用DED技术获得的沉积质量受工艺参数的影响。因此,本实验的目的是评估激光功率、激光头移动速度和送粉速率等参数变化引起的微观结构变化,以改善和优化堆叠质量。利用光学显微镜分析了微观结构的形状、热影响区和稀释率。此外,还计算了全局能量密度(GED),因为它会影响3D打印产品的质量。通过计算不同工艺条件下的GED,确定DED方法的最佳工艺条件。
洛斯阿拉莫斯国家实验室是一家采取平权行动/提供平等机会的雇主,由 Triad National Security, LLC 为美国能源部国家核安全局运营,合同编号为 89233218CNA000001。通过批准本文,出版商承认美国政府保留非独占的、免版税许可,可以为了美国政府的目的出版或复制本文的已发表形式,或允许他人这样做。洛斯阿拉莫斯国家实验室要求出版商将本文注明为在美国能源部的支持下完成的工作。洛斯阿拉莫斯国家实验室坚决支持学术自由和研究人员的发表权利;但是,作为一个机构,实验室并不认可出版物的观点,也不保证其技术上的正确性。
免责声明 本信息是根据美国政府机构资助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
摘要 - 视网膜假体可以改善受感光者退行性疾病盲目的患者的视力。尽管人为视力受益,但这些假体的空间分辨率低限制了临床上可用设备的积极影响。视觉植入物中单电极产生的视觉感知可以重叠并导致不清楚的图像,这限制了视网膜假体使用者的形状和字母感知。然而,研究表明,在靶神经元近距离近端植入的较小的电极可能可以使用较小的分辨率。在这项研究中,我们使用穿透性亚细胞纤维微电极在离体小鼠视网膜中进行了视网膜刺激,并进行了钙成像以记录视网膜神经节细胞(RGC)的空间激活,以响应不同的刺激振幅和RGC-电极距离。我们观察到较小的RGC空间活性和较高的RGC - 电极距离较小的脱靶刺激,这可能是通过双极细胞间接RGC激活的指示。碳纤维电极的阻抗测量在整个插入和刺激过程中证明了它们的机械和电稳定性。我们的结果表明,脉冲振幅和电极深度的修饰会在活动电极周围产生小而焦点的响应。用碳纤维进行的视网膜刺激可能会增加临床应用中视网膜假体的刺激精度和图像分辨率。
(VB) 移至导带 (CB),在 VB 中产生空穴 (h +)。Mg 和 S 掺杂剂产生窄带隙,使得在相似能量下更容易区分光诱导电荷载流子。因此,在相似能量下更容易分离光诱导电荷载流子 (Singaram et al., 2017)。Mg 和 S 离子既充当电子受体又充当供体,将成功抑制电荷复合并产生更具反应性的物种以促进 MB 降解。由于