自古以来,战争就一直在发生。同一行业的公司之间的战争也由来已久。其中持续时间最长的战争之一是可乐战争,即亚特兰大可口可乐公司与纽约百事可乐公司之间的战争。这两家公司的营销部门几十年来一直在争夺消费者心目中排名第一的软饮料。为了保护自己产品的份额,两家公司都推出了新产品。其中最大的产品是可口可乐和百事可乐都推出的健怡可乐。截至 1991 年,可口可乐在可乐战争中占据第一的位置,市场份额为 19.7%,其次是百事可乐,为 17.8%,然后是健怡可乐,为 8.7%,健怡百事可乐为 5.7%(《饮料行业手册 90/91》,第 14 页)。研究过去的战争有助于确定如何制定新战争的策略。然而,大多数营销人员过于关注如何让产品保持最新状态,以至于他们没有回顾过去的历史。即使回顾了过去的历史,营销历史也往往关注发生了什么,而不是为什么。研究可乐战争的过去营销历史可以洞察关键的竞争举措和错误。
本材料中所含信息或意见未经独立核实。对于本材料中所含信息或意见的公正性、准确性、完整性或正确性,我们未作任何明示或暗示的陈述或保证,亦不应依赖这些陈述或保证。本材料中所含信息和意见截至发布之日,如有变更,恕不另行通知,且不会更新或以其他方式修改以反映发布之日后可能发生的任何发展。本公司、其任何关联公司、董事、监事、高级管理人员、高级职员、雇员、顾问及其各自的代表对因本材料中所含或呈现或衍生的任何信息或因本材料而产生的任何损失(无论是否过失)概不负责。
与其他 BTK 抑制剂相比,奥布替尼具有更好的血浆暴露和强大的中枢神经系统渗透性。在一项全球 2 期研究中,奥布替尼在 RRMS 中表现出令人鼓舞的疗效。我们对其治疗 PPMS 和 SPMS 的潜力持乐观态度,由于缺乏有效的治疗方法,这些疾病仍然存在大量未满足的医疗需求。2024 年 9 月,诺诚健保获得 FDA 批准,启动奥布替尼在 PPMS 中的 3 期试验,预计 FPI 将于 2025 年第 2 季度公布。此外,FDA 鼓励诺诚健保启动针对 SPMS 人群的 3 期试验,预计 FPI 将于 2025 年第 3 季度公布。除了推进这些试验外,我们预计公司将积极寻求奥布替尼的授权机会。此外,鉴于 2a 期 SLE 试验结果良好,我们预计 2b 期试验结果将于 2025 年第 4 季度公布,3 期试验计划已在进行中。 两种 TYK2 抑制剂表现出差异化疗效。
通过睡眠倾向测试(SPT研究了抗抑郁药曲唑酮和丙咪嗪对昼夜节律的影响;由35分钟的EEG记录在09:00,11:00,11:00,11:00,13:00,13:00,15:00,15:00,17:00,17:00)检查了睡眠潜伏期。受试者是11名健康的男性志愿者(平均年龄为23.6岁)。药物每天使用不活动的安慰剂作为对照,每天对单盲试验进行4次药物。药物的剂量为曲唑酮50-100毫克,丙咪嗪20-40毫克。我们讨论了使用相同的药物和剂量与大多数相同受试者的相同药物和剂量进行的循环节奏(涉及先前的polysomnograhy psg)研究。结果,SPT的平均睡眠潜伏期在09:00(p <0.1)(安慰剂)中最短,在11:00 p <0.05时,曲唑酮和13:00(在13:00)(没有显着)使用丙氨酸胺给药。这些结果表明两种药物都不会影响嗜睡。他们在白天(一天的节奏)上影响了昼夜节律。他们推迟了一天的节奏。一天节奏的延迟是由于曲唑酮造成的,不仅是由Trazodon给药本身引起的,而且还引起了前一天晚上PSG研究中获得的慢波睡眠的增加。和日节律延迟是由于丙咪嗪引起的,并且可能不仅是由丙咪嗪的给药本身引起的,而且还由慢波睡眠和REM睡眠的百分比降低,以及前一天晚上PSG研究中获得的REM潜伏期的增加。因此,我们得出的结论是,没有药物影响嗜睡的趋势,但确实影响了健康受试者的节奏。
技术发展与创新 (CDTI) 项目是西班牙科学与创新部支持的科学与创新任务计划 2021 年提案征集的一部分。该项目的拨款由欧盟通过下一代欧盟基金提供。
5 AID:自身免疫性疾病;AUS:澳大利亚;CHN:中国;SGP:新加坡;IND:新药研究;NDA:新药申请 CLL/SLL:慢性淋巴细胞白血病/小淋巴细胞淋巴瘤;MCL:套细胞淋巴瘤;MZL:边缘区淋巴瘤;r/r:难治性或复发性;MS:多发性硬化症;系统性红斑狼疮,AD:特应性皮炎;ITP:免疫性血小板减少症 财务截止 2023 年第三季度
Public Works Research Institute, National Research and Development Agency Structure Maintenance Research Center Nishikawa Kazuhiro Sep. 2018 - Mar. 2022 Kanazawa Fumihiko Sep. 2018 - Mar. 2020 Kiriyama Takaharu Sep. 2018 - Bridge Structure Research Group, Structure Maintenance Research Center Hoshikuma Junichi July 2011 - Masahiro Ishida Sep. 2018 - Michio Osumi Sep. 2018 - Mamoru Sawada Sep. 2018 - Mar. 2018 Kamisen Yasushi Sep. 2018 - Mar. 2022 Tanaka Yoshiki Sep. 2018 - Mar. 2019 Oshima Yoshinobu Sep. 2018 - Mar. 2020 Hiroe Akiko Sep. 2018 - Mar. 2020 Morimoto Tomohiro Sep. 2018 - Mar. 2019 Matsumoto Naoshi Sep. 2018 -与上述相同,同一计划的第三年:Masashi Endo,9/2018-3/2010与上述相同,Tsubasa Noda,9/2018-2018-5/2010相同,Toshitaka Suemune,4/2019-2019-3/2020与上述相同IRO NINOMIYA,4/2019-7/2020与上述相同,Takahiro Masuda,4/2019-7/2020与上述相同,Nakaura Shinnosuke Nakaura,4/2019-4/2011与上述相同/2019-4/2022与上述相同,Kohei Eguchi,4/2019-3/2022与上述相同Kenta H31.4 ~ 相同 峰高 R1.5 ~ R2.4 相同 大西贵则 R1.7 ~ R3.9 相同 篠田龙作 R2.4 ~ R4.3 相同 高桥稔 R2.4 ~ 相同 藤木裕二 R2.4 ~ 相同 饭岛翔一 R2.4 ~ 相同 夏堀至 R2.4 ~ 相同 小林匠 R2.4 ~ 相同 岩谷勇太 R2.7 ~ 相同 菅原达也 R2.7 ~ 相同 行堂慎也 R2.8 ~ R4.7 相同 竹内绫 R3.4 ~ 相同 佐藤淳也 R3.4 ~ 相同 大西达也 R3.10 ~ 相同 藤田智宏 R4.4 ~ 相同西原和彦 2002 年 4 月 - 2010 年 3 月 同一技术推进本部 先进技术组 新田京二 2018 年 9 月 - 2020 年 3 月 同一技术 森川博国 2009 年 4 月 - 2022 年 3 月 同一技术 田中洋一 2018 年 9 月 - 2019 年 3 月 同一技术 服部达也 2019 年 4 月 - 2021 年 3 月 同一技术 茂木雅晴 2011 年 4 月 - 2022 年 3 月 同一技术 下川光晴 2018 年 10 月 - 2019 年 3 月 同一技术 榎本真美 2018 年 10 月 - 2021 年 3 月 同一技术 二宫健 2019 年 4 月 - 2022 年 3 月 先进材料资源研究中心 材料资源研究组 古贺博久 2018 年 9 月 - R4.3 〃 中村英佑 H30.9 ~ H31.6
药品部分第药品部分第药品部分第药品部分第30 30 30 30次次次次(10 (10 (10 (107777年年年年2222月月月月))))会议会议会议会议10 10 10 107777年年年年2222月月月月8888日日日日
摘要 - 全球农业行业已经面临各种问题,例如人口迅速增长和气候变化。在几个国家中,日本的农业劳动力在下降。为了解决这个问题,日本政府旨在实现应用信息和通信技术,人工智能和机器人技术的“智能农业”。智能农业要求开发机器人技术来进行除草和其他劳动密集型农业任务。机器人除草由一种使用机器学习的对象检测方法组成,以对杂草和农作物进行分类以及使用机器人手和激光器的自主除草系统。但是,这些方法使用的方法会根据作物的生长而改变。除草系统必须根据作物的生长考虑组合。本研究介绍了杂草检测和农作物混合脊(例如大蒜和姜田)中的自主除草。我们首先使用Mask R-CNN开发一种杂草检测方法,该方法可以通过RGB-D相机捕获的颜色图像来检测单个杂草。所提出的系统可以根据检测到的杂草区域和相机捕获的深度图像在物理空间中获得杂草坐标。随后,我们提出了一种指导除草剂操纵器向检测到的杂草坐标的方法。本文通过这两种建议的方法整合了杂草检测和自主除草。我们评估了在实际领域拍摄的图像训练的面膜R-CNN的性能,并证明所提出的自主除草系统在复制的山脊上起作用,其人造杂草类似于大蒜和杂草叶子。