摘要:可植入的微电极阵列(MEA)可以记录皮质神经元的电活动,从而允许脑机界面的发展。然而,MES显示在慢性条件下的记录功能降低,促使新型MEA的发展可以改善长期性能。传统的平面,基于硅的装置和超薄的无定形碳化硅(A-SIC)测量植入雌性Sprague-Dawley大鼠的运动皮层中,并在植入后进行每周的麻醉记录。在两种设备类型的植入周期中,比较了1至500 Hz记录的光谱密度和频道。最初,A-SIC设备和标准测量值的带有可比性。然而,在植入后整个16周内,标准测量值显示出体力和功率频谱密度均持续下降,而A-SIC的测量表现出更加稳定的性能。从植入后第6周到研究结束时,标准和A-SIC MEA之间的带能量和光谱密度之间的差异在统计学上是显着的。这些结果支持使用超薄的A-SIC测量来发展慢性,可靠的脑机界面。
对农业实验站田间采集的3,203幅病害数据图像进行了诊断,准确率较高,为79~99%,但对于导致叶片表面出现褐变症状的白粉病,由于数据量较少,准确率较低,仅为25%(表2)。对2,275张虫害图像数据进行了诊断。结果显示,蓟马(果实)、蚜虫(果实)、粉虱(叶背)在图像中拍摄到健康区域时诊断结果为健康的可能性较大,准确率较低。但其他虫害的准确率较高,在81%~100%之间(表3)。现场诊断结果与农业实验站现场诊断结果的准确率相似(未显示数据)。当检查使用智能手机诊断应用程序在现场拍摄的 632 张病害照片和 179 张虫害照片时,准确率大致相同(表 4,图 1)。对于推广讲师对诊断应用程序的可用性,应用程序的评价普遍良好,具有操作流程简单易懂、图标大且易于使用等特点。
1个运动障碍和神经调节单元,神经病学系,Charité-柏林大学柏林大学,柏林,柏林,柏林,10117,德国2脑调节实验室,马萨诸塞州神经外科部,马萨诸塞州综合医院,波士顿,波士顿,马萨诸塞州,马萨诸塞州,马萨诸塞州,美国3.2114 15213,美国4计算机科学系,柏林柏林技术大学,柏林,柏林,10587,德国5哈佛医学院,马萨诸塞州波士顿,02114,美国,
我们通过 CRISPR–Cas9 编辑 12 个优良玉米自交系中的蜡质等位基因,创造了蜡质玉米杂交种,这一过程比使用回交和标记辅助选择的传统性状基因渗入快了一年多。在 25 个地点进行的田间试验表明,CRISPR-蜡质杂交种在农艺上优于基因渗入杂交种,平均每英亩产量高出 5.5 蒲式耳。玉米蜡质基因 (Wx,也称为 Wx1) 编码一种颗粒结合的 NDP-葡萄糖-淀粉葡萄糖基转移酶,该酶负责延长直链淀粉中葡萄糖聚合物的线性链 1。野生型 (WT) 种子淀粉由~25% 直链淀粉和~75% 支链淀粉组成,而功能丧失的 wx 突变种子淀粉则由~100% 的支链淀粉组成,这使胚乳具有像蜡烛一样暗淡而光滑的外观 2 ,因此得名“糯玉米”。糯玉米淀粉用于造纸和粘合剂工业,并在食品工业中用作稳定剂和增稠剂 3 。美国每年在约 500,000 英亩的土地上生产约 8000 万蒲式耳糯玉米。有~200 个 wx 突变等位基因是自发产生的,通过随机诱变产生的,或通过非优良品系中的 CRISPR-Cas 靶向诱变产生的 4,5 。其中,wx-C 等位基因是现代商业糯玉米杂交种中使用最广泛的 wx 供体。商业化糯玉米杂交种是通过将 wx 突变基因渗入优良自交系而开发的。基因渗入通常需要与轮回亲本回交六到七代并自交才能获得用于商业化杂交生产的自交系。糯玉米杂交种的产量比对应的非糯玉米杂交种低约 5% 3 。产量降低的原因尚不清楚;可能是由于性状基因渗入造成的连锁累赘或 wx 突变导致的淀粉性质改变。使用 CRISPR-Cas9 进行基因组编辑和改进的转化技术 6 – 9 有可能缩短糯玉米杂交种的上市时间并消除回交过程中出现的连锁累赘。我们报道了使用 CRISPR-Cas9 和形态发生基因直接在 12 个优良玉米自交系中产生糯玉米缺失等位基因并进行多点产量测试的情况,所有这些过程耗时三年,这比基因渗入方法快得多。使用图 1a 中概述的策略,在优良自交系中生成了两个蜡质缺失等位基因,即 4 千碱基 (kb) 和 6 kb 缺失。为了在自交系 PH184C 中生成 4 kb 缺失系,将编码基因组编辑试剂 (指导对 CR1/CR3 和 Cas9;补充图 1) 的 DNA 引入未成熟胚胎中
在同一户外围栏内饲养的 26 只白尾鹿幼崽要么接受了 3 疗程疫苗接种(n=12),要么保持未接种疫苗状态(n=14)。我们根据性别和遗传学对样本进行分层。在接种疫苗前(基线)和每次加强接种后 14-20 天(加强接种 1 和 2)采集每只动物的血清。通过病毒中和试验检测血清中 EHDV1、2 和 6 抗体。
a 华盛顿州立大学生物系统工程系,邮政信箱 646120,华盛顿州普尔曼 99164,美国 b 华盛顿州立大学生物系统工程系精准与自动化农业系统中心,华盛顿州普罗瑟 24106 North Bunn Road,华盛顿州 99350,美国 c 俄勒冈州立大学作物与土壤科学系赫米斯顿农业研究与推广中心,俄勒冈州赫米斯顿 2121 S. 1st Street,俄勒冈州 97838,美国 d 美国农业部-农业研究服务处谷物豆科植物遗传与生理研究组,邮政信箱 646434,华盛顿州普尔曼 99164,美国 e 美国农业部-农业研究服务处蔬菜与饲料作物生产研究组,华盛顿州普罗瑟 24106 North Bunn Road,华盛顿州 99350,美国 f 华盛顿州立大学作物与土壤科学系,邮政信箱646420, Pullman, WA 99164, USA g Department of Horticulture, Washington State University, PO Box 646414, Pullman, WA 99164, USA
a 华盛顿州立大学生物系统工程系,邮政信箱 646120,华盛顿州普尔曼 99164,美国 b 华盛顿州立大学生物系统工程系精准与自动化农业系统中心,华盛顿州普罗瑟 24106 North Bunn Road,华盛顿州 99350,美国 c 俄勒冈州立大学作物与土壤科学系赫米斯顿农业研究与推广中心,俄勒冈州赫米斯顿 2121 S. 1st Street,俄勒冈州 97838,美国 d 美国农业部农业研究服务处谷物豆科植物遗传与生理研究组,邮政信箱 646434,华盛顿州普尔曼 99164,美国 e 美国农业部农业研究服务处蔬菜与饲料作物生产研究组,华盛顿州普罗瑟 24106 North Bunn Road,华盛顿州 99350,美国 f 华盛顿州立大学作物与土壤科学系, PO Box 646420, Pullman, WA 99164, USA g Department of Horticulture, Washington State University, PO Box 646414, Pullman, WA 99164, USA
田间收获期间的卫生 收获储存容器在使用前要清洗。 干净的容器在田间使用前要保持盖好。 收获设备保持清洁并处于良好的工作状态。 收获的农产品不会接触粪便、非饮用水、卫生条件差和/或靴子和衣服脏的工人以及不洁的包装或储存容器。 禁止农场牲畜(包括家禽或宠物)进入种植和收获农作物的田地或果园。收获期间的良好卫生习惯有助于降低新鲜农产品被微生物污染的风险。土壤、肥料、收获设备、水、工人、宠物和害虫都可能是导致食源性疾病的有害微生物的来源。因此,种植者必须采取措施,防止这些微生物来源污染农产品。良好的卫生习惯包括清洁和消毒所有与食品接触的表面、鼓励工人讲究卫生并进行培训以及让动物、宠物和其他野兽远离田地、果园和包装厂。我们所说的“食品接触表面”、“清洁”和“消毒”是什么意思? 食品接触表面是指在收获、包装或运输期间与新鲜农产品接触的表面。 清洁是指用肥皂或洗涤剂清洗和擦洗食品接触表面以去除污垢和残留物,然后用干净的饮用水冲洗。 消毒是指用可以杀死大多数微生物的消毒溶液处理食品接触表面。必须先清洁表面才能进行消毒。 消毒溶液是按照制造商的说明将少量消毒剂与饮用水混合而制成的。 消毒剂是一种用于杀死微生物的化合物。最常用的是氯漂白剂和季铵化合物。走遍您的工厂,检查是否存在以下潜在食品安全危害的迹象: 田地里的宠物、牲畜、家禽或野生动物 田地和果园里的人类或动物粪便 生病或不卫生的工人 肮脏的收获容器 满载泥土或粪便的农产品 破损和肮脏的收获设备