1862 年,随着《莫里尔土地赠与学院法案》的通过,美国土地赠与机构成立,旨在提供卓越的教学、研究和推广,为下一代农民、牧场主和寻求高等教育的公民提供教育。田纳西大学诺克斯维尔分校(包括田纳西大学农业研究所)是田纳西州 1862 年的土地赠与机构。农业实验站(又称田纳西大学农业研究)是土地赠与系统的关键。田纳西大学农业研究系统包括十个站点,现称为田纳西大学农业研究和教育中心。每个中心都是一个独特的户外实验室,它们共同代表了该州多样化的农业和自然资源生产以及土壤、地形和气候。它们合计占地 39,000 多英亩,每年进行 1,000 多次田间试验和大约 20 天的田间活动,为田纳西州及其他地区的农民、土地管理者和相关行业创造和展示真实的生活解决方案。这些中心还为学生提供充足的实践体验式学习机会,并向公众展示食品和纤维的生产过程。
摘要 基因组编辑对于作物改良非常有用。利用农杆菌中的瞬时表达系统表达基因组编辑酶的方法,称为农杆菌诱变,是基因组编辑技术中用于改良包括马铃薯在内的无性繁殖作物优良品种的一种捷径。然而,用这种方法不能选择经过编辑的个体。再生促进基因的瞬时表达可以导致幼苗再生出芽,而大多数再生促进基因的组成性表达不会导致正常再生的芽。在这里,我们报告我们可以通过正向选择获得基因组编辑的马铃薯。这些再生芽是通过将再生促进基因与基因组编辑酶基因的瞬时表达相结合的方法获得的。此外,我们证实,用这种方法获得的基因组编辑马铃薯不含有农杆菌中使用的二元载体的序列。我们的数据已提交给日本监管机构文部科学省 (MEXT),我们正在对这些马铃薯进行田间试验以进一步研究。我们的工作为通过再生促进基因的瞬时表达来再生和获取基因组编辑作物提供了一种强有力的方法。
摘要。适当的田间管理需要高精度、高准确度和高分辨率的植物高度测量方法。研究表明,地面激光扫描 (TLS) 适用于捕获农作物等小物体。本文介绍了用于监测中国水稻田植物高度的多时相 TLS 调查结果。在田间试验和农民常规管理的田地上进行了三次活动。高密度的测量点使我们能够建立分辨率为 1 厘米的作物表面模型,可用于推导植物高度。对于两个地点,TLS 得出的植物高度和手动测量的植物高度之间都具有很强的相关性(R 2 = 0.91),这证实了扫描数据的准确性。根据田间试验的植物高度和生物量样本之间的相关性建立了生物量回归模型(R 2 = 0.86)。模拟值和测量值之间的强相关性(R 2 = 0.90)支持了对农民田地的可转移性。独立的生物量测量用于验证时间可转移性。该研究证明了 TLS 在推导植物高度方面的优势,可用于模拟生物量。因此,激光扫描方法是精准农业的一种很有前途的工具。© 作者。由 SPIE 根据知识共享署名 3.0 未移植许可证出版。
白粉病是草莓生产中最严重的疾病之一。迄今为止,很少有商业草莓品种被认为具有完全抗性,因此必须实施广泛的喷药计划来控制病原体。在这里,我们进行了一项大规模田间试验,以确定不同草莓基因型的叶片和果实组织的白粉病抗性状况。这些表型数据用于识别与组织特异性白粉病抗性相关的数量性状核苷酸 (QTN)。总共发现六个稳定的 QTN 与叶面抗性有关,其中一个位于 7D 染色体上的 QTN 与抗性增加 61% 相关。与叶片结果相反,没有与果实抗病性相关的 QTN,在草莓果实上观察到高水平的抗性,果实和叶片症状之间没有观察到遗传相关性,表明组织特异性反应。除了识别基因位点之外,我们还证明了基因组选择可以快速提高基因型的叶面抗性,并有可能捕获种群中存在的 50% 以上的遗传叶面抗性。迄今为止,草莓中强抗白粉病的育种一直受到天然抗性的定量性质以及缺乏有关该性状的遗传控制知识的阻碍。这些结果解决了这一不足,为社区提供了可用于基因组知情育种的大量信息,实施该育种可以提供对抗白粉病的天然抗性策略。
摘要 —本文介绍了 xarvio TM 提供的数字农业解决方案,以及这些解决方案如何有助于实现联合国可持续发展目标。通过利用人工智能的最新进展,农民可以通过有针对性的使用更有效地应用作物保护。本文介绍的各个模块,即喷雾定时器、区域喷雾、缓冲区和产品推荐,确保在正确的时间和地点使用作物保护产品,同时确保以最佳速率使用正确的产品。这不仅减少了对环境的影响,而且提高了农民的生产力和盈利能力。我们的数字解决方案的影响通过两个主要粮食生产地区的真实案例研究得到体现:欧洲和巴西。在欧洲,使用人工智能驱动的喷洒时间、可变速率应用地图和产品推荐,使田间试验谷物作物的杀菌剂使用量减少了 30%,罐内残留物减少了 72%,减少了环境污染。在巴西,使用计算机视觉技术创建的区域喷洒杂草地图解决方案平均节省了 61%,减少了近三分之二的除草剂和水消耗。因此,本文提出的解决方案符合联合国零饥饿和负责任消费与生产的可持续发展目标。索引术语 — 可持续农业、数字农业、深度学习、农学建模、负责任的农药使用、精准农业
✉ 通讯和材料索取请发送至 Pamela C. Ronald 或 Guotian Li。pcronald@ucdavis.edu;li4@mail.hzau.edu.cn。作者贡献 GL、GS、PS 和 PCR 设计了实验。GL 和 RJ 筛选并分析了 rbl1 突变体的基因组数据。GS、PS、XK、XH、YL、YW、QG、XC 和 LZ 进行了植物感染试验。GS、XK、XH 和 YW 进行了 DAB、ROS、水杨酸、亚细胞定位、RT-qPCR 和 GUS 组织化学分析。LY 和 ZQ 进行了生物信息学分析。GS、JG、LF、LG、JCM、YB 和 QL 进行了脂质组学分析。YZ 和 YW 进行了 rbl1 的化学补充分析。 GS、QS、QG、Q. Zhou 和 T.-YC 进行了酵母突变体互补分析。JZ 和 KX 生成了 CRISPR 构建体。XK、XH、YL、W. Zhou、W. Zhang、Q. Zeng 和 ZK 筛选了编辑后的品系。GS、YW、RH 和 JX 进行了田间试验和农艺性状分析。GL 和 GS 起草了手稿,GL、GS、PS、LF、LZ、LG、KX、JCM、QL、YB、ZK 和 PCR 修改了手稿。所有作者都阅读并批准了最终手稿。
尽管现代生物技术、特别是基因改造在世界许多地方都是争论的话题,但越来越多的撒哈拉以南非洲国家在授权普遍释放转基因 (GM) 作物品种供农民和农业企业使用方面取得了重要进展。显然,基于二十多年记录的种植转基因作物所获得的经济和环境效益是决策过程的主要驱动力。另一个关键因素是生物安全监管政策与非洲先进的农业和农村发展政策日益保持一致,与过去相比,生物安全监管审查更加注重预期效益而不是风险。在一些情况下,这导致对转基因作物释放申请的审查加快,无论是进行限制性田间试验还是普遍环境释放,同时考虑到其他国家的经验和数据。随着有利于穷人的相关转基因作物应用渠道不断扩大,以及新型植物育种技术带来的机遇不断增加,此类监管方法大有可为。这篇评论文章分析了部分非洲经济体不断变化的政策环境,这些环境导致采用新的农业技术,并在生物安全决策中使用新的监管方法。将介绍加纳、肯尼亚、马拉维、尼日利亚和乌干达的案例研究,以分析挑战、总结经验教训并为新兴经济体提出一般政策建议。
收获后食物损失仍然是农村农业地区面临的一个重大挑战,储存设施不足和能源供应不可靠加剧了这一问题。本研究开发并优化了一种先进的可再生能源冷藏系统,该系统专门针对农村环境,将太阳能和风能与相变材料 (PCM) 相结合,实现高效的能源储存。该系统结合了基于物联网 (IoT) 的传感器和人工智能 (AI) 驱动的能源管理,以保持最佳储存条件并提高能源效率。在英国林肯郡和美国阿巴拉契亚地区进行的田间试验表明,收获后食物损失显著减少,平均减少了 43.5%,农产品保质期延长了 300%,小农户的收入增加了约 43%。与传统的柴油驱动系统相比,该系统还实现了温室气体排放减少 80%。经济分析显示,该系统的投资回收期更短,投资回报率更高,证实了该系统的可行性。高用户满意度和采用率表明该系统的实用性和广泛实施的潜力。研究结果表明,将可再生能源与智能技术融入冷藏解决方案,为加强粮食安全、促进农村经济增长和支持全球环境目标提供了一种可扩展且可持续的方法。
马铃薯是第三大重要粮食作物,但种植面临众多疾病和不利的非生物条件的挑战。为了对抗疾病,经常使用杀菌剂是很常见的。通过基因组编辑敲除易感基因可能是提高抗性的持久选择。DMR6 已被描述为几种作物中的易感基因,根据数据显示,基因功能中断后抗性增加。在马铃薯中,Stdmr6-1 突变体已被描述为在受控条件下对晚疫病病原菌 Phytophthora infestans 具有更高的抗性。在这里,我们展示了连续四年在 P. infestans 种群复杂的地区对 CRISPR/Cas9 突变体进行的田间评估,结果表明对晚疫病的抗性增强,而不会影响产量或块茎质量。此外,对田间试验中马铃薯块茎的研究表明,对普通疮痂病的抗性增强,突变株系在受控条件下表现出对早疫病病原菌 Alternaria solani 的抗性增强。早疫病和疮痂病是马铃薯抗性育种中难以攻克的病害,因为抗性基因非常稀少。Stdmr6-1 突变体所描述的广谱抗性可能进一步扩展到某些非生物胁迫条件。在干旱模拟或盐度的受控实验中,Stdmr6-1 突变体植物受到的影响小于背景品种。总之,这些结果表明 Stdmr6-1 突变体有望成为未来可持续马铃薯种植的有用工具,且没有任何明显的权衡。
摘要 在埃及农业研究中心农场 (Kaha) 连续两个冬季(2020/2021 和 2021/2022)对朝鲜蓟进行了田间试验。本研究调查了以不同比率在土壤中施用蚯蚓堆肥的影响。结合叶面施用微量元素和不同比率的蚯蚓清洗剂对朝鲜蓟植物生长、鲜重和干重、产量构成和化学成分的影响。试验采用裂区设计;在主地块中以不同的速率(1、1.5 和 2 吨/次)添加蚯蚓堆肥,并与推荐剂量的堆肥(2 吨/次作为对照)进行比较。子区分别在种植后 60-80-100-120 天进行叶面喷洒,1-水为对照,2-微量元素(Fe、Mn、Cu 和 Zn)为 50 g/100 升水,3-蚯蚓冲洗液为 10 升/100 升水。结果表明,(蚯蚓堆肥 1.5 吨/次施肥和喷洒蚯蚓冲洗液处理)之间的相互作用记录了最高的总产量,同时,(堆肥+蚯蚓冲洗液和微量元素)组合记录了最低的花头产量。而早期作物的最高值来自以 1 吨/吨蚯蚓堆肥+蚯蚓冲洗液的施肥率。叶面喷洒施用蚯蚓冲洗液和 2 吨/次施肥。增加了菊粉百分比。另一方面,叶面施用微量营养素以及 1 吨/次蚯蚓堆肥可提高干物质百分比。关键词:蚯蚓堆肥-蚯蚓清洗-微量元素-洋蓟-有机施肥。