力学(IACM)2012 - 2016 莱布尼茨超级计算中心咨询委员会成员 2012 - 2020 ECCOMAS 执行委员会成员(增选)2013 - 2016 德国计算力学协会 (GACM) 主席 2014 - 2017 TUM 生物工程学院创始董事会成员 2014 – 格拉茨工业大学(奥地利格拉茨工业大学)研究与技术委员会成员 2015 – 奥地利科学院海外通讯院士 2015 - 2017 国际流体数值方法杂志主编 2015 - 2020 ERC 高级资助小组成员(后任小组副主席)2016 – TUM 任命和终身教职委员会成员 2017 – 国际机械科学中心 (CISM) 校长意大利乌迪内 2017 年 – 巴伐利亚州科学与人文学院院士 2019 年 – 亥姆霍兹格斯塔赫特中心 (HZG,材料与海岸研究中心) 技术科学委员会成员 2020 年 – 亥姆霍兹中心 Hereon GmbH 技术科学委员会主席 2021 年 – 慕尼黑生物医学工程研究所 (MIBE) 成员,TUM 2021 年 – 慕尼黑机器人与机器智能研究所 (MIRMI) 成员,TUM 2021 年 – 慕尼黑数据科学研究所 (MDSI) 核心成员,TUM 2022 年 – 奥地利研究基金会指导讲师 2022 年 – 材料、能源与过程工程研究所 (MEP) 核心成员,TUM 2022 年 – 莱布尼茨超级计算中心 (LRZ) 顾问委员会成员 2023 年 – 巴伐利亚州科学与人文学院总统战略顾问委员会成员
10。作为一个地区,让我们设定有形的目标,不仅是为了减少我们对化石燃料的依赖,而且还可以增加对可再生能源的使用。在博茨瓦纳,我们将自己设定为将电力生产扩展到至少在四年之内至少8,000兆瓦的目标,这是我们为使电力部门现代化现代化的努力的一部分,战略性转向了太阳能主导的能源行业。我们相信,这样做,我们将为更具可持续性和竞争性的能源格局奠定基础。
在通信过程中估计信号时,自然需要利用对未知参数的先验知识进行贝叶斯参数估计 [1]。量子通信是一种很有前途的近期通信技术,它可以比传统协议更安全、更有效地传输信息。关于如何在给定的噪声量子信道上忠实地传输经典和/或量子信息,已经有很多研究,例如 [2]–[4]。量子贝叶斯估计是有效解码量子态中编码的经典信息的关键因素。量子贝叶斯估计在量子传感和量子计量领域也得到了极大关注 [5]–[8]。量子贝叶斯估计大约半个世纪前由 Personick [9],[10] 发起。由于量子估计理论的最新进展,量子贝叶斯估计问题重新引起了人们的关注。针对贝叶斯风险,提出了几种量子贝叶斯界,例如 [9]–[17]。然而,它们中的大多数都没有捕捉到真正的量子性质,因为已知的下界几乎都是基于经典贝叶斯界的直接翻译。特别是,先前提出的下界是通过对算子空间上的内积的某个选择应用柯西-施瓦茨型不等式推导出来的。Holevo 在一般统计决策问题的背景下发起了对量子估计的非平凡下界的研究 [18]。他还基于量子 Fisher 信息矩阵分析了贝叶斯风险的下界 [19]–[21]。特别是,他对高斯移位进行了彻底的分析
1. ABET 认证要求研讨会(2 小时),2019 年 9 月 2 日星期一。 2. ABET 认证标准研讨会(2 小时),2019 年 10 月 7 日星期一。 3. 评分标准研讨会(3 小时),2019 年 10 月 27 日星期一。 4. 毕业项目和暑期培训 KPI 研讨会(2.5 小时),2019 年 11 月 26 日星期四。 5. 课程文件准备研讨会(1.5 小时),2019 年 11 月 28 日星期二。 6. 调查分析研讨会(3 小时),2019 年 12 月 5 日星期二。 7. 自学报告准备研讨会(3 小时),2019 年 12 月 21 日星期二。 8. 考试模板规范和设计研讨会(1.5 小时),2020 年 2 月 23 日星期一。 9.基于考试的课程学习成果(2.5 小时),2020 年 2 月 24 日星期一。10. 预先评分标准 KPI 研讨会(2 小时),2019 年 12 月 2 日星期一。11. 综合课程设计研讨会(3.5 小时),2020 年 2 月 4 日星期二。12. 课程学习成果评估、挑战和成就研讨会(3 小时),2020 年 1 月 27 日星期一。
标题:用于实时信号处理应用的容错 VLSI 架构设计摘要:由于设计复杂性和晶体管密度的增加导致芯片故障率很高,容错在当今的数字设计中变得极为重要。我们已经确定了现有容错方法的主要缺陷,并尽可能地尝试纠正它们。我们修改了传统的动态重构方法,使其适用于实时信号处理应用,并结合了热备用、优雅降级、级联性和 C 可测试性。我们还提出了一些新的静态冗余技术,这些技术在各个方面都优于现有方法,并且具有实际适用性。• 使用 XILINX 中的 verilog HDL 和原理图级与 virtex-6 进行 RTL 设计、仿真和验证• 使用 SYNOPSYS 工具进行设计和验证以及面积和关键路径结果的计算• 使用 CADENCE 工具进行一些面积和延迟计算。