子宫宫颈癌是全球妇女(1)和中国(2)中与癌症相关死亡的最常见原因之一,中国患者占全球新宫颈癌总数的28%(3)。鲁棒和标准筛查计划将显着降低宫颈癌的发生率(4)。目前,宫颈细胞学和/或高危人乳头瘤病毒(HRHPV)测试是主要筛查方法(5,6)。但是,细胞学和HRHPV测试都在其诊断准确性方面都有局限性(7,8)。一种具有很高准确性和可行性的成本益处对于宫颈癌筛查的决策至关重要(9),并且在中国等发展中国家也迫切需要。DNA甲基化是一种表观遗传机制,可导致基因的遗传沉默,而不会改变其编码序列(10,11)。已有100多个人类(宿主)基因可能是宫颈癌的甲基化生物标志物(12),其中一些基因已得到与宫颈癌发展相关的验证(13)。HPV整合事件下组蛋白修饰的变化与附近基因和内源性逆转录病毒的上调相关(14)。基因分型和甲基化标记是客观的,即使在尿液样本(15)中,也可以与自我获得的样品一起使用(9),在低收入和中等收入设置中具有很大的优势。多个面板已被用作分类器,由数十个候选宿主基因,病毒基因或两者以及其各种组合组成(16)。众多研究表明,甲基化对宫颈上皮内肿瘤(CIN)2或更严重的病变具有有利的筛查敏感性(CIN2+或高级上皮内病变[HSIL])作为阳性HRHPV状态的女性的三叶叶方法。甲基化测试作为宫颈癌筛查的未来方法之一。但是,大多数研究仅针对宫颈癌筛查程序中甲基化测定的分类作用,而不是其独立的诊断能力。先前的宫颈程序和子宫肾脏或卵巢疾病对细胞学甲基化测定的影响几乎没有得到研究。果酱(连接粘附分子)家族是免疫球蛋白超家族的一部分,对上皮细胞和内皮细胞的紧密连接功能有直接影响(19)。jam3已被广泛研究为粘附和移民的调节剂(20)。最近的研究揭示了JAM3在肿瘤进展过程中肿瘤生长调节中的关键作用(21)。红细胞膜蛋白蛋白4.1像3(EPB41L3),也称为蛋白4.1b/dal-1,是一种膜骨骼蛋白,参与了各种细胞骨架相关的过程。其功能包含单元格
摘要 化合物 MK-801{(+)-5-甲基-10,11-二氢-5H-二苯并[a,d]环庚烯-5,10-亚胺马来酸盐} 是一种强效抗惊厥药,口服后有效,其作用机制尚不清楚。我们在大鼠脑膜中检测到了 [3H]MK-801 的高亲和力(Kd = 37.2 ± 2.7 nM)结合位点。这些位点不耐热、具有立体选择性且具有区域特异性,其中海马的位点密度最高,其次是大脑皮层、纹状体和延髓脑桥。小脑中未检测到结合。MK-801 结合位点表现出一种新的药理学特性,因为这些位点上没有一种主要的神经递质候选物活跃。唯一能够竞争 [3H]MK-801 结合位点的化合物是已知能够阻断由 N-甲基-D-天冬氨酸 (N-Me-D-Asp) 受体亚型介导的兴奋性氨基酸反应的物质。这些物质包括分离性麻醉药苯环利定和氯胺酮以及 a 型阿片类药物 N-ailylnormetazocine (SKF 10,047)。使用大鼠皮质切片制剂进行的体外神经生理学研究表明 MK-801 对 N-Me-D-Asp 的去极化反应具有强效、选择性和非竞争性拮抗作用,但对海人酸或奎斯奎特无作用。苯环利定、氯胺酮、SKF 10,047 和 MK-801 对映体作为 N-Me-D-Asp 拮抗剂的效力与其作为 [3H]MK-801 结合抑制剂的效力密切相关 (r = 0.99)。这表明 MK-801 结合位点与 N-Me-D-Asp 受体相关,并解释了 MK-801 作为抗惊厥药的作用机制。
图1。Meow在长阅读测序数据中识别差异甲基化区域。A. Meow需要一组带有填充的MM和ML标签的对齐的BAM文件以及包含感兴趣区域列表的床文件,例如CPG岛,以构建参考数据库。在构建参考数据库后,可以在参考队列中执行一项输出分析,以识别该数据集中的唯一差异甲基化区域(DMR)。也可以使用已经构建的参考数据库来识别DMR的测试样本运行。两种方法的输出都在表或图形格式中获得。B.与已知具有Prader-Willi综合征的测试样品相比,与19个随机样品的对照数据库相比,显示了已知具有Prader-Willi综合征的测试样品的显着差异甲基化的位点(红色),该数据库是1000个基因组项目ONT测序联盟的一部分。C. Meow生成图形,说明了测试样品和对照数据集之间甲基化频率的显着差异。所示的五个DMR表示(b)中的显着值。D.色带图显示了查询中每个C和G的甲基化频率,相对于控制数据库甲基化频率在同一位置的平均值和标准误差。
长卷(也称为covid-19 [PASC]的急性后遗症)是指幸存者在严重急性呼吸综合征冠状病毒2(SARS-COV-2)感染和急性冠状病毒疾病2019(Covid-19)疾病后可能经历的慢性症状。长期的共同是全球公共卫生,医疗和护理挑战,影响了数百万人。作为一种新兴和不断发展的综合症,长期的共同表现出了许多临床体征和症状的组合,医疗保健提供者和科学家正在分类和努力理解。在这个小评论中,我们介绍了病毒和宿主相互作用的DNA甲基化(DNAM)的表观遗传战场。我们提出了这种病毒宿主相互作用引起的DNAM现象和标记的方法可能有助于阐明长期相互作用的病理和预后。在撰写本文中,对长期共vid患者的DNAM特征的了解受到限制(2024年初),研究人员已经注意到急性Covid-19引起的DNAM标记的部分可逆性和潜在的长期持久性。在其他冠状病毒疾病中看到的长期后遗症,例如严重的急性呼吸综合征(SARS)和中东呼吸综合征(MERS),是长期参考的潜在参考,以努力进行更精确的诊断和疾病特征,更好地预测爆发,并使用新药物和免疫药物的发展。
德国海德堡德国癌症研究中心的分子遗传学师(C.F.A.,M.I.,B.R.,P.L.,M.Z。 ); HOPP儿童癌症中心海德堡,德国海德堡(D.T.W.J.,M.K.,S.M.P。 );德国海德堡的德国癌症研究中心儿科胶质瘤研究小组(D.T.W.J.,M.K.,S.M.P。 );德国海德堡的德国癌症联盟和德国癌症研究中心儿科神经科学系(S.M.P. ) );德国海德堡海德堡大学医院儿科肿瘤学,血液学和免疫学(S.M.P. ) );德国癌症联盟,德国癌症研究中心,德国海德堡(D.T.W.J.,M.K.,S.M.P.,P.L。 );德国海德堡大学海德堡大学医院病理研究所神经病理学系(又称) );临床合作部门神经病理学,德国转化癌症研究财团,德国癌症研究中心,海德堡,德国(又称 );肿瘤中的群体基因组不稳定性,德国癌症研究中心,德国海德堡(A.E.)德国海德堡德国癌症研究中心的分子遗传学师(C.F.A.,M.I.,B.R.,P.L.,M.Z。); HOPP儿童癌症中心海德堡,德国海德堡(D.T.W.J.,M.K.,S.M.P。);德国海德堡的德国癌症研究中心儿科胶质瘤研究小组(D.T.W.J.,M.K.,S.M.P。);德国海德堡的德国癌症联盟和德国癌症研究中心儿科神经科学系(S.M.P.);德国海德堡海德堡大学医院儿科肿瘤学,血液学和免疫学(S.M.P.);德国癌症联盟,德国癌症研究中心,德国海德堡(D.T.W.J.,M.K.,S.M.P.,P.L。);德国海德堡大学海德堡大学医院病理研究所神经病理学系(又称);临床合作部门神经病理学,德国转化癌症研究财团,德国癌症研究中心,海德堡,德国(又称);肿瘤中的群体基因组不稳定性,德国癌症研究中心,德国海德堡(A.E.)
在发表的文章中,传说中有一个错误的补充图6M,n。使用“启动子活动”而不是“ WGB”进行样品相关聚类。正确的材料语句出现在下面。(M)热图显示了GSE70091中三对启动子活性的相关性。(n)热图显示了删除N3和T3对后,GSE70091中两对启动子活性的性能相关性更好。在已发表的文章中,存在印刷错误。基因名称“ rabgap1l”被错误地写成“ rabgapl1”。对结果进行了校正,甲基化调节的AP可以用作肿瘤诊断标记,第1段。这句话先前指出:“六个MRAP被聚集为四个上调的MRAPS(TNFRSF10的Prmtr.53735,RGS3的Prmtr.32651,CCDC150的Prmtr.36049,RASSF1的Prmtr.5237和RASSF1的Prmtr.5237和Prmtr.5237)和两个下降MRAPS(prmtr.14) prmtr.39585 rabgapl1的启动子活动(图4D,鞋面;表1;表S5)”
摘要DNA甲基化酶已从再生大鼠肝脏中的核中纯化660倍。该酶能够甲基化单链(SS)和双链(DS)DNA,唯一的反应产物是5-甲基胞霉素。先前未甲基化的双链DNA来自原核生物(M.luteus)以及Euka-ryotes(Ascaris suis)可以用作底物。合成共聚物(DG-DC)n。(DC-DG)N和(DG,DC)N也被甲基化。虽然SV40 DNA几乎不是甲基化的,但即使以超涂层形式,PM2 DNA也是一个很好的底板。甲基化酶在异源性luteus dna中的17个碱基中的1个,但在同源大鼠肝脏DNA中只有590分之一。M. uteus DNA的高甲基化水平,对甲基化嘧啶等属菌的分析和初步的二核苷酸分析表明,DNA中的所有CpGs都可以甲基化。
噬菌体FD,FL和OX174是已知的最小病毒之一。它们属于具有单链圆形DNA作为其遗传物质(1-4)的一组良好特征的副觉。他们的DNA的分子量约为2 x 106,仅包含有限数量的基因。fd和fl是丝状噬菌体,在血清学和遗传上相关。ox174是一个显然与丝状噬菌体无关的球形噬菌体。dev> deNhardt和Marvin(5)通过DNA-DNA杂交进行了表明,尽管这两种类型的噬菌体(即丝状和球形)在每种类型的DNA之间没有检测可检测的同源性,尽管在每种类型内部都有很高的同源性。最近,已经推出了一种相对较快的分馏和序列大嘧啶寡核苷酸的技术。已经确定了9-20个基碱残基的FD DNA中长嘧啶裂纹的序列(6)。在本报告中,提出了来自FL和OX174 DNA的大嘧啶产物的序列。将这些序列与先前从FD DNA获得的序列进行了比较。
持续感染高危型人乳头瘤病毒 (HR-HPV) 以及随后的病毒癌蛋白 E6 和 E7 上调被认为是宫颈癌变中的关键分子事件 ( 1 , 2 )。这些癌蛋白会干扰关键宿主肿瘤抑制蛋白的功能,导致恶性转化。具体来说,E6 会促进 p53 的降解,p53 是一种对程序性细胞死亡至关重要的肿瘤抑制因子,而 E7 则会抑制通常调节细胞周期进程的视网膜母细胞瘤蛋白 (pRb) ( 3 , 4 )。p53 和 pRb 功能的破坏会导致染色体不稳定和癌症发展 ( 5 )。在各种 HR-HPV 类型中,HPV16 最为常见(其次是 HPV18),是全球 50% 以上宫颈癌病例的诱因 ( 6 – 8 )。 HPV 感染发生在宫颈上皮未分化的基底细胞中,病毒早期蛋白 E1、E2、E6 和 E7 在此细胞中表达水平较低(9)。随着被感染细胞的分化,病毒晚期蛋白 L1 和 L2 产生,用于衣壳的形成和病毒颗粒的组装。E4 蛋白通过与宿主细胞骨架结合协助病毒颗粒的释放(10,11)。高免疫原性的 L1 蛋白的产生受宿主蛋白和表观遗传修饰的调控,确保其仅在分化细胞中表达,从而逃避免疫检测(12)。HPV16 L1 蛋白及其相关 mRNA 在低度宫颈病变和增殖性感染中可检测到,但其缺失与高度病变高度相关(13,14)。虽然 L1 编码序列在转化细胞中保持完整,但衣壳蛋白不会合成(15)。尽管 HR-HPV 感染是宫颈癌的必要前兆,但只有一小部分感染者会发展为宫颈癌 ( 16 , 17 )。目前的 HPV DNA 检测不足以准确识别需要阴道镜检查的 HR-HPV 阳性女性,因为许多感染都是暂时性的 ( 18 )。目前建议对 HPV16 和 HPV18 进行基因分型,并结合细胞学检查进行宫颈癌筛查 ( 19 );然而,需要更特异的生物标志物来分类 HPV16 或 HPV18 阳性的女性,并减少不必要的阴道镜转诊 ( 20 , 21 )。宿主基因和 HPV 基因的甲基化已得到广泛研究,并被证实与宫颈异常有关 ( 22 , 23 )。甲基化修饰,例如 L1 基因内的 CpG 位点甲基化,可以控制该基因的表达,该基因在转化的宫颈细胞中经常被沉默。亚硫酸氢盐测序报告称 3' L1 基因区域的甲基化水平较高,表明其在控制 L1 表达方面具有潜在作用 ( 24 , 25 );然而,亚硫酸氢盐测序和直接测序等方法可能导致临床样本中甲基化水平估计不准确。焦磷酸测序,一种更准确的定量方法,已用于测量 HPV DNA 甲基化,揭示了各种 HPV 类型的 L1 和 L2 区域的高甲基化( 26 , 27 )。最近的研究表明,L1 基因甲基化可以区分宫颈上皮内瘤变 3 (CIN3) 和浸润性宫颈癌( 26 , 28 )。
基因选择性转录因子通过与其靶基因调节区域内的特定DNA元件结合(1)。但是,并非完全定义此DNA结合的序列要求。几个参数,例如蛋白质 - 蛋白质相互作用与相邻结合的因素,DNA结构的影响(弯曲等)。),重要的是,结合位点与认知因子的比率确定给定转录因子是否可以有效地与相应的结合位点相互作用。体外和大概也在体内也是如此,对于确定转录因子是否会与其最佳识别序列的变体结合,因此,它的基因调节。在这些考虑因素中提示,我们询问是否存在一种蜂窝机制,该机制是否存在在转录因子活动和可用目标位点的繁琐之间保持平衡。对AP-1家族成员的特征良好转录因子C-Jun进行了实验(2-4)。包含AP-1结合位点的启动子是C-Jun调节的目标。C-Jun的活性受到多种机制的紧密控制,并且对蛋白质的异常调节会导致恶性转化和致癌作用(5)。在这项研究中,我们描述了一种机制,该机制通过改变其磷酸化态的DNA结合活性,取决于细胞中存在的C-Jun结合位点的浓度。这种机制可以用来设置和微调C-Jun与其结合位点的比率。有趣的是,与这种现象有关的磷酸化位点与以前据报道经历信号依赖性去磷酸化相同。