1。神经病学系,加州大学洛杉矶分校,洛杉矶,加利福尼亚2。基因组健康研究所,伊坎医学院位于纽约,纽约州西奈山3. 分子,细胞和发育生物学系,加州大学洛杉矶分校;洛杉矶,加利福尼亚4。 化学,生命科学和环境可持续性系,意大利帕尔马大学5。 澳大利亚布里斯班昆士兰州大学分子生物学研究所6。 心血管研究所,加州大学旧金山UCSF 7。 系统和合成生物学,基因组调节中心,西班牙巴塞罗那8。 内科学系III,维也纳医科大学风湿病学系,奥地利,奥地利9。 马萨诸塞州波士顿的达纳 - 法伯癌症研究所医学肿瘤学系10. 计算和系统生物学跨部门计划,加州大学洛杉矶分校,加利福尼亚州洛杉矶11。 澳大利亚生物工程和纳米技术学院,澳大利亚布里斯班昆士兰州大学12。 皇家布里斯班和妇女医院神经病学系,澳大利亚昆士兰州布里斯班, 生物医学科学学院,澳大利亚布里斯班昆士兰州大学医学院 昆士兰州脑研究所,昆士兰州昆士兰州,布里斯班,澳大利亚15。 Mater公立医院,澳大利亚布里斯班16。 神经病学系,加州大学旧金山,加州大学,加利福尼亚州17。 加利福尼亚大学洛杉矶分校的人类遗传学系,加利福尼亚州洛杉矶基因组健康研究所,伊坎医学院位于纽约,纽约州西奈山3.分子,细胞和发育生物学系,加州大学洛杉矶分校;洛杉矶,加利福尼亚4。化学,生命科学和环境可持续性系,意大利帕尔马大学5。澳大利亚布里斯班昆士兰州大学分子生物学研究所6。心血管研究所,加州大学旧金山UCSF 7。 系统和合成生物学,基因组调节中心,西班牙巴塞罗那8。 内科学系III,维也纳医科大学风湿病学系,奥地利,奥地利9。 马萨诸塞州波士顿的达纳 - 法伯癌症研究所医学肿瘤学系10. 计算和系统生物学跨部门计划,加州大学洛杉矶分校,加利福尼亚州洛杉矶11。 澳大利亚生物工程和纳米技术学院,澳大利亚布里斯班昆士兰州大学12。 皇家布里斯班和妇女医院神经病学系,澳大利亚昆士兰州布里斯班, 生物医学科学学院,澳大利亚布里斯班昆士兰州大学医学院 昆士兰州脑研究所,昆士兰州昆士兰州,布里斯班,澳大利亚15。 Mater公立医院,澳大利亚布里斯班16。 神经病学系,加州大学旧金山,加州大学,加利福尼亚州17。 加利福尼亚大学洛杉矶分校的人类遗传学系,加利福尼亚州洛杉矶心血管研究所,加州大学旧金山UCSF 7。系统和合成生物学,基因组调节中心,西班牙巴塞罗那8。内科学系III,维也纳医科大学风湿病学系,奥地利,奥地利9。马萨诸塞州波士顿的达纳 - 法伯癌症研究所医学肿瘤学系10.计算和系统生物学跨部门计划,加州大学洛杉矶分校,加利福尼亚州洛杉矶11。澳大利亚生物工程和纳米技术学院,澳大利亚布里斯班昆士兰州大学12。皇家布里斯班和妇女医院神经病学系,澳大利亚昆士兰州布里斯班,生物医学科学学院,澳大利亚布里斯班昆士兰州大学医学院昆士兰州脑研究所,昆士兰州昆士兰州,布里斯班,澳大利亚15。Mater公立医院,澳大利亚布里斯班16。神经病学系,加州大学旧金山,加州大学,加利福尼亚州17。加利福尼亚大学洛杉矶分校的人类遗传学系,加利福尼亚州洛杉矶
越来越多的研究报告说,细菌DNA甲基化具有重要的功能,超出了其在限制性修饰系统中的作用,包括影响临床相关的表型,例如毒力,宿主定殖,孢子孢子,生物膜形成等。尽管有洞察力,但此类研究在很大程度上具有临时的性质,并且将从系统的策略中受益,从而实现微生物学界对细菌甲基瘤的联合功能表征。在这种意见中,我们建议高度保守的DNA甲基转移酶(MTases)代表了细菌表观基因组学研究的独特机会。这些MTases在细菌中很常见,跨越各种分类法,并且存在于多种人类病原体中。除了具有良好特征的核心DNA MTase,例如来自Vibrio Cholera,Salmonella Enterica,梭状芽胞杆菌艰难梭菌或化脓性链球菌的核心MTase,在许多人类病原体中也发现了多个高度保守的DNA MTase,其中包括属于Burkholderia属的人和阿科氏菌。我们讨论了为什么以及如何优先考虑这些MTase,以使社区范围内的综合方法进行功能基氏症研究。最终,我们讨论了一些高度保守的DNA MTases如何成为开发新型表观遗传抑制剂以用于生物医学应用的有希望的靶标。
摘要:二甲双胍是全球规定的抗糖尿病药物之一,也被认为是其他治疗应用,包括癌症和内分泌疾病。它在很大程度上是由人类酶及其在环境中的存在无代谢的,这引起了人们的关注,据报道,对水生生物的有毒作用以及对人类的潜在影响。我们报告了菌株MD1的分离和表征,菌株MD1是一种用二甲双胍生长为唯一的碳,氮和能源的有氧甲基营养细菌。菌株MD1将二甲双胍降解为用于生长的二甲基胺,而鸟苷脲作为副产品。对其完全组装的基因组的序列分析表明其对氨基杆菌的影响。差异蛋白质组学和转录组学,以及菌株的微型转poson诱变,指向二甲双胍生长必不可少的基因和蛋白质,并可能与二甲双胍的水解C-N裂解有关,或与二甲甲甲酸和七一个甘表示的细胞转运有关。获得的结果表明,菌株MD1降解二甲双胍的生长支持能力的最新演变。我们的结果确定了菌株MD1中二甲双胍转化的酶系统的候选蛋白质,并将为未来关于二甲双胍及其降解产物在环境和人类中的降解产物的命运提供信息。
图1。使用荧光团 - 猝灭剂系统对DNA二级结构进行高通量热力学测量。a。折叠(淬火)和展开(荧光)状态的DNA分子的示意图。b。固定在测序芯片表面上的荧光DNA簇的图像。顶部:仅具有荧光团偶联的寡核(CY3),以及荧光团和淬火剂偶联的寡核能的图像。底部:每个图像中DNA分子的示意图。所有图像均标准化为超稳定的茎和重复对照变体,以依赖温度对荧光和淬火的影响,如图S1D。 c。库型和淬灭剂偶联的寡核苷酸的恒定序列结合位点之间的库变体设计。 红色代表每种类型内的支架核苷酸恒定,蓝色可系统排列的变量('n')。 每个类下的数字指示每个类中唯一序列的数量。 d。对照构建体的荧光测量,其中荧光团和淬灭器之间的单链距离在单核苷酸步骤下增加。 橙色线显示理论拟合。 e。在较高的温度(熔体曲线,X轴)和降低温度(退火曲线,Y轴)f的情况下,∆G 37的相关性来自图书馆变体。熔融曲线的代表性示例在GC含量方面有所不同。 g。三个熔体和一个退火曲线实验重复的∆G 37的Pearson相关性。S1D。c。库型和淬灭剂偶联的寡核苷酸的恒定序列结合位点之间的库变体设计。红色代表每种类型内的支架核苷酸恒定,蓝色可系统排列的变量('n')。每个类下的数字指示每个类中唯一序列的数量。d。对照构建体的荧光测量,其中荧光团和淬灭器之间的单链距离在单核苷酸步骤下增加。橙色线显示理论拟合。e。在较高的温度(熔体曲线,X轴)和降低温度(退火曲线,Y轴)f的情况下,∆G 37的相关性来自图书馆变体。熔融曲线的代表性示例在GC含量方面有所不同。g。三个熔体和一个退火曲线实验重复的∆G 37的Pearson相关性。h。各种构造类别的标准误差为∆G 37的函数。
在过去的十年中,干细胞分化和修复组织的显着能力吸引了大幅关注。这些细胞已被证明具有多能分化的显着潜力,在精确定义的条件和特定的环境提示下,具有分化为成骨,脂肪生成,软骨和肌生成细胞谱系的能力(1)。尽管在整个身体的几个组织中已经鉴定出间质干细胞(MSC),包括脂肪组织,肌肉和牙髓,但骨髓仍然是这些细胞的主要储层(2)。因此,源自骨髓的MSC被广泛认为是研究和表征MSC的基准。关于MSC的实验室研究显着有助于理解这些细胞,从而为研究人员提供了宝贵的见解和知识(3,4)。今天,研究人员采用定义明确的培养条件和生长因素来指导MSC分化为特定的细胞谱系。这可以利用MSC用于再生医学和组织工程中的各种应用(5,6)。脂肪形成是一个严格控制的过程,其中间充质干细胞将分化为成熟和功能性脂肪细胞(7)。在最佳条件下,这些间充质细胞表现出不同的形态特征,并表达与脂肪细胞成熟相关的特定基因。必须考虑到分化过程是一种多阶段和协调的现象,涉及间充质干细胞,前脂肪细胞和成熟的脂肪细胞作为关键参与者(8)。有效的细胞内和细胞外微环境的有效细胞通信对于脂肪形成必须是必不可少的(9)。生长因子,分子信号和转录因子介导这种复杂的通信。此过程中涉及的转录因子之一是过氧化物酶体增殖物激活的受体伽马(PPARγ)。pPARγ属于配体激活的转录因子家族,在基因表达的调节中起着重要作用(10)。先前的研究已经证明,PPARγ基因对于将间充质干细胞区分为完全成熟的脂肪细胞至关重要(11)。它被认为是此过程中的一个基本因素。PPARγ包括两个同工型,两种同工型都在脂肪细胞中表达。对与该转录因子相关的调节区域的分析表明,它参与了参与脂肪生成的许多基因的转录调控(12,13)。衍生自骨髓的间充质干细胞
摘要越来越多地通过探索表观遗传机制,尤其是DNA甲基化来阐明阿尔茨海默氏病发病机理的复杂性。本综述全面调查了最新以人为中心的研究,这些研究研究了整个基因组DNA甲基化在阿尔茨海默氏病神经病理学中。对各种大脑区域的检查揭示了与Braak阶段和阿尔茨海默氏病进展相关的独特DNA甲基化模式。内嗅皮层由于其早期的组织学改变以及随后对海马等下游区域的影响而成为焦点。值得注意的是,在内嗅皮层中复杂地鉴定出与神经纤维缠结形成有关的Ank1高甲基化。此外,颞中回和前额叶皮层显示出对Hoxa3,Rhbdf2和MCF2L等基因的显着高甲基化,这可能会影响神经炎症过程。BIN1在晚期阿尔茨海默氏病中的复杂作用与改变的甲基化模式相关。尽管在研究之间存在差异,但这些发现突出了表观遗传修饰与阿尔茨海默氏病病理学之间的复杂相互作用。未来的研究工作应解决方法论上的差异,结合多样的人群,并考虑环境因素,以揭示阿尔茨海默氏病进展的细微表观遗传景观。关键词:阿尔茨海默氏病; ank1; bin1; DNA甲基化;全基因组的关联研究; Hoxa3; MCF2L; RHBDF2
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
了解环境溶解的有机物(DOM)依赖于能够导航其固有复杂性的方法的发展。尽管分析技术一直在不断提高,从而改善了散装和分级DOM的见解,但单个化合物类别的命运几乎不可能通过当前技术跟踪。以前,我们报道了羧酸盐富含甲基分子(CRAM)化合物的合成,该化合物与以前可用的标准相比,与DOM共享更相似的分析特征。在这里,我们采用我们的合成式烤箱化合物并将它们与选择的一组策划的一组购买的分子以及选择的生物学或化学相关性的附加策划的一组购买的分子一起,采用我们的合成的CRAM化合物,将常规使用DOM用作批量材料。辐照实验通常表明,在饱和碳主链上仅携带羧酸和/或酒精的化合物对光化学降解具有最具耐药性,但在DOM的存在下,某些具有CRAM样式和化学功能的化合物也更稳定。在微生物孵化中,在各种水生环境中8个月后,我们的所有合成cram均完全稳定。这些实验集为环境中提议的CRAM的稳定性提供了支持,并提供了一个平台,可以使用该平台,可以使用多种多样的分子来帮助探测DOM的稳定性。
任何人都可以自由访问可作为“开放访问”的作品的全文。可根据创意共享许可提供的作品可根据所述许可条款和条件使用。使用所有其他作品的使用要求正确持有人(作者或出版商)同意,如果不符合适用法律的版权保护。