参考(1)fu,l。; niu,b。 Z。Z。; Wu,S。; Li,W。序列分析CD-HIT:加速用于聚类下一代测序数据。2012,28(23),3150–3152。https://doi.org/10.1093/bioinformatics/BTS565。 (2)Boyd,E。S。; Barkay,T。汞电阻操纵子:从地热环境中的起源到有效的排毒机。 Front Microbiol 2012,3(10月),349。https://doi.org/10.3389/fmicb.2012.00349。 (3)Pitts,K。E。;萨默斯,A。O。 硫醇在细菌有机灰裂(MERB)中的作用。 生物化学2002,41(32),10287–10296。 https://doi.org/10.1021/bi0259148。 (4)Kozlov,A。M。;达里巴(Darriba),d。面粉,t。;莫雷尔,b。 Stamatakis,A。Raxml-NG:一种快速,可扩展和用户友好的工具,可用于最大似然系统发育推断。 生物信息学2019,35(21),4453–4455。 https://doi.org/10.1093/bioinformatics/btz305。 (5)Christakis,C。A。; Barkay,T。;博伊德(E. S. 前微生物2021,12,682605。https://doi.org/10.3389/fmicb.2021.682605/full。https://doi.org/10.1093/bioinformatics/BTS565。(2)Boyd,E。S。; Barkay,T。汞电阻操纵子:从地热环境中的起源到有效的排毒机。Front Microbiol 2012,3(10月),349。https://doi.org/10.3389/fmicb.2012.00349。(3)Pitts,K。E。;萨默斯,A。O。硫醇在细菌有机灰裂(MERB)中的作用。生物化学2002,41(32),10287–10296。https://doi.org/10.1021/bi0259148。 (4)Kozlov,A。M。;达里巴(Darriba),d。面粉,t。;莫雷尔,b。 Stamatakis,A。Raxml-NG:一种快速,可扩展和用户友好的工具,可用于最大似然系统发育推断。 生物信息学2019,35(21),4453–4455。 https://doi.org/10.1093/bioinformatics/btz305。 (5)Christakis,C。A。; Barkay,T。;博伊德(E. S. 前微生物2021,12,682605。https://doi.org/10.3389/fmicb.2021.682605/full。https://doi.org/10.1021/bi0259148。(4)Kozlov,A。M。;达里巴(Darriba),d。面粉,t。;莫雷尔,b。 Stamatakis,A。Raxml-NG:一种快速,可扩展和用户友好的工具,可用于最大似然系统发育推断。生物信息学2019,35(21),4453–4455。https://doi.org/10.1093/bioinformatics/btz305。 (5)Christakis,C。A。; Barkay,T。;博伊德(E. S. 前微生物2021,12,682605。https://doi.org/10.3389/fmicb.2021.682605/full。https://doi.org/10.1093/bioinformatics/btz305。(5)Christakis,C。A。; Barkay,T。;博伊德(E. S.前微生物2021,12,682605。https://doi.org/10.3389/fmicb.2021.682605/full。
以下成分(以下称为“组织”)在每只鱼时被解剖:大脑,尾骨,背部肌肉,胆囊,g丝,性腺,心脏,心脏,肠,肝脏,肝脏和胃衬里。仅采样白色肌肉组织;将背部肌肉在背鳍插入底部的孔和通风口前的后方采样,然后将尾肌放在脂肪鳍后的后方,并在尾部的前面。在分析之前,将皮肤,骨骼和软骨从白色肌肉组织中去除。性腺被整体取样,并不区分为睾丸或卵巢,因为柳叶鱼大于100 cm是同时的雌雄同体(Bañon等人。2022)。胃被清空,用Milli-Q水冲洗以清除所有内容物。解剖后,将所有组织用Milli-Q轻轻冲洗,以避免样品之间的污染,放置在预先投资的旋风中,并在干燥之前和之后称重以测量水分含量。组织在-80°C中冷冻,然后在旋转式中进行冷冻干燥和匀浆或使用电子磨坊(IKA管磨机100控制)。铣削容器和工具在样品之间用95%的乙醇清洁。
编号元素汞从未在任何疫苗中。元素汞在环境中形成甲基汞。甲基汞是一种可以在鱼类和海鲜中生物占用的毒素。乙酰汞是锡莫拉索中的一种化合物。与甲基汞不同,乙基汞很容易从体内消除。乙基组使其与甲基汞完全不同。在2001年,除多蛋白流感疫苗外,将Thimerasol从所有儿童疫苗中取出。
不。任何疫苗中都不含元素汞。元素汞在环境中会形成甲基汞。甲基汞是一种毒素,可在鱼类和海鲜中生物累积。乙基汞是硫柳汞中的一种化合物。与甲基汞不同,乙基汞很容易从体内排出。乙基使它成为与甲基汞完全不同的化学物质。2001 年,除多剂量流感疫苗外,所有儿童疫苗中均不含硫柳汞。
布朗利水库是一个受汞 (Hg) 污染的水力发电水库,具有动态水文和地球化学条件,位于美国爱达荷州的赫尔斯峡谷综合体内。鱼类中的甲基汞 (MeHg) 污染是该水库令人担忧的问题。虽然甲基汞的产生历来被归因于硫酸盐还原菌和产甲烷古菌,但携带 hgcA 基因的微生物在分类学和代谢上是多样的,驱动汞 (Hg) 甲基化的主要生物地球化学循环尚不清楚。在本研究中,在连续四年 (2016-2019) 的分层时期测量了整个布朗利水库的汞形态和氧化还原活性化合物,以确定甲基汞产生的地点和氧化还原条件。对一组样本进行了宏基因组测序,以表征具有 hgcA 的微生物群落,并确定生物地球化学循环与甲基汞产生之间的可能联系。生物地球化学概况表明,原位水柱汞甲基化是甲基汞的主要来源。这些概况与以携带 hgcA 的微生物为重点的基因组解析宏基因组学相结合,表明该系统中的甲基汞生成发生在硝酸盐或锰还原条件下,而这些条件以前被认为可以阻止汞甲基化。利用这种多学科方法,我们确定了水文年际变化对氧化还原状态、微生物代谢策略、汞甲基化剂的丰度和代谢多样性以及最终对整个水库的甲基汞浓度的连锁效应。这项工作扩展了已知的有利于产生甲基汞的条件,并表明在某些地方通过硝酸盐或锰修正来缓解汞甲基化的努力可能会失败。
选择最合适的保存方法对于维持生物中微生物的生命力,交流电,免疫原性和遗传稳定性至关重要(Simões2013)。最常见的保存技术是基于通过亚培养或通过脱水和冻结来维持持续生长的持续生长(Agarwal and Sharma 2006)。连续培养仅用于短期存储(Ryan等人。2000)由于该方法是费力的,并且经常重新培养可能会导致污染或SUD DEN菌株变性,这可能会导致病学,生理或毒力变化(Vasas等人。1998; Shivas等。 2005; Bégaud等。 2012; 2013)。 此外,许多微生物分类群目前是不可养殖的,因为合适的培养条件是未知的(Ryan等人 2000; Ryan等。 2019)。 因此,在超低温度下的冷冻干燥和冷冻保存被认为是长期存储的最佳方法(Ryan等人 2019)。1998; Shivas等。2005; Bégaud等。 2012; 2013)。 此外,许多微生物分类群目前是不可养殖的,因为合适的培养条件是未知的(Ryan等人 2000; Ryan等。 2019)。 因此,在超低温度下的冷冻干燥和冷冻保存被认为是长期存储的最佳方法(Ryan等人 2019)。2005; Bégaud等。2012; 2013)。此外,许多微生物分类群目前是不可养殖的,因为合适的培养条件是未知的(Ryan等人2000; Ryan等。2019)。因此,在超低温度下的冷冻干燥和冷冻保存被认为是长期存储的最佳方法(Ryan等人2019)。
纳米材料具有独特的性质,例如高表面积、增强的反应性以及可调的物理和化学特性,并且在重金属检测方面显示出巨大的潜力。特定功能化的量子点可与特定分析物结合。特定的结合能力会引起电子特性的变化,从而引起传感器基质的化学电阻响应。从这个角度来看,开发了一种与汞离子结合的传感器基质。然后将该传感器基质印刷在条带上,以便能够测量条带暴露于分析物(甲基汞)时电阻率的变化。可以使用掌上设备测量电阻率的变化,该设备显示水样中的汞污染水平。在掺有甲基汞的真实水样以及鱼血样本中测试了污染水平。
在一般人群中,饮食是汞暴露的主要来源,主要是通过食用鱼类。掠食性鱼类(例如淡水中的梭子鱼、海水中的金枪鱼和剑鱼)的汞含量可能是大多数其他鱼类中平均汞含量的 50 倍以上。在鱼类中检测到的总汞中有 70% 到 90% 是以甲基汞的形式存在的。美国食品药品监督管理局 (FDA) 负责监管商业鱼类。法规要求市场上销售的鱼类中汞含量不得超过百万分之一 (ppm)。许多州对运动用鱼的建议含量较低。其他潜在的饮食暴露来源包括食用食鱼鸟类和哺乳动物以及在使用含汞杀虫剂的地区食用野禽。1971-72 年冬季,数千名伊拉克人因食用用甲基汞杀菌剂处理过的小麦种子制成的自制面包而中毒。
摘要:由于人为活性,海洋的汞含量(HG)含量增加了两倍,尽管黑海洋(> 200 m)已成为重要的HG储层,但有毒和生物蓄积的甲基汞(MEHG)的浓度很低,因此很难测量。因此,当前对深海中HG周期的理解受到严格的数据限制,控制MEHG的因素及其转换率仍然很大程度上未知。通过分析52个全球分布的巴基拉质深元素宏基因组和26个来自Malaspina Expedition的新元转录组,我们的研究揭示了在全球浴类海洋中(〜4000 m深度)中细菌编码基因Mera和Merb的广泛分布和表达。这些基因与Hg II还原和MEHG脱甲基化相关的基因在粒子附着的分数中尤为普遍。此外,我们的结果表明,水质量年龄和有机物组成塑造了拥有Mera和Merb基因的结构,这些群落和Merb基因生活在不同的粒径分数,其丰度及其表达水平。命令的成员Corynebacteriales,Rhodobacterales,Alteromonadales,Oceanospirillales,Moraxelleles和Flavobacteriales是深海中包含Mera和Merb基因的主要分类参与者。这些发现,加上我们先前具有具有代谢能力降解MEHG的深层层流海洋的纯培养物分离株的结果,表明甲基汞脱甲基化和HG II还原可能发生在全球黑暗海洋中,这是生物圈中最大的生物组。关键字:汞,甲基汞,浴样,细菌脱甲基化,宏基因组,metatranscriptomes,mer基因■简介