生成高质量的艺术肖像视频是计算机图形和视觉中的重要且理想的任务。尽管已经提出了一系列成功的肖像图像图像模型模型,但这些面向图像的方法在应用于视频(例如固定框架尺寸,面部对齐,缺失非种族细节和时间不一致的要求)时具有明显的局限性。在这项工作中,我们通过引入一个新颖的Vtoonify框架来研究具有挑战性的可控高分辨率肖像视频风格转移。具体而言,Vtoonify利用了基于编码器提取的多尺度内容功能的高质量艺术肖像来利用型号的中高分辨率层,以更好地保留框架详细信息。结果完全卷积体系结构接受可变大小的视频中的非对准面孔作为输入,从而有助于完整的面部区域,并在输出中自然动作。我们的框架与现有的基于样式的图像图像模型兼容,以将其扩展到视频化,并继承了这些模型的吸引力,以使其具有柔性风格的颜色和强度控制。这项工作分别为基于收藏和基于典范的肖像视频风格转移而建立在Toonify和Dualstylegan的基于Toonify和Dualstylegan的Vtoonify的两个实例化。广泛的实验结果证明了我们提出的VTOONIFY框架对现有甲基的有效性在生成具有灵活风格控件的高质量和临时艺术肖像视频方面的有效性。代码和预估计的模型可在我们的项目页面上找到:www.mmlab-ntu.com/project/vtoonify/。
不利的早期生活经历(ELA)会影响世界上大多数孩子的孩子。尽管建立了ELA对认知和情感健康的持久影响,但没有工具可以预测单个孩子中Ela conse问题的脆弱性。表观遗传标记在内,包括外周细胞DNA-甲基化谱可能会编码ELA并提供预测性结果标记,但人类基因组的个体差异和儿童期在儿童期的DNA甲基化的快速变化构成了重大挑战。希望减轻这些挑战,我们研究了几个ELA维度与DNA甲基化变化和结果的关系,并使用受试者内部纵向设计和高甲基化变化阈值的关系。在110名婴儿中,在收集两次(新生儿和12个月)收集的颊拭子/唾液样品中分析了DNA甲基化。我们确定了每个孩子在时间上差异化甲基甲基的CPG,并确定他们是否与5岁的ELA指标和执行功能相关联。我们根据最有助于甲基化变化的地点评估了性别差异,并得出了性别依赖性的“影响评分”。单个儿童的两个样本之间的甲基化变化反映了与年龄相关的趋势,并与几年后的执行功能相关。在经过测试的ELA维度和生命因素中,包括收入与需求比率,孕产妇敏感性,体重指数和婴儿性别,父母的不可预测性和家用信号是执行功能的最强预测指标。在女孩中,高早期生命的不可预测性与甲基化变化对预设执行功能相互作用。因此,纵向,受试者内部甲基化谱的变化可能会提供ELA的特征和个体结果的潜在预测标记。
广谱除草剂耐药性(BSHR)通常与基于新陈代谢的除草剂耐药性有关,对粮食生产构成威胁。过去的研究表明,催化性混杂酶的过表达解释了某些杂草中的BSHR。然而,BSHR表达的机制仍然很少理解。在这里,我们研究了在美国发现的BSHR晚期水草中高级抗性甲基的分子基础(echinochloa phyllopogon),在美国发现,这不能完全通过过度表达的散布性细胞色素P450单一单胶酶Cyp81a12/212/21。BSHR后期水草线迅速产生了2种不同的羟基化双洛未甲酸,其中1个是CYP81A12/21产生的主要代谢物。RNA-SEQ和随后的逆转录定量PCR(RT-QPCR)基于基于基因CYP709C69的转录连接的过表达,在BSHR线中鉴定出具有CYP81A12/21的转录连接的过表达。该基因在植物中赋予了双洛牛甲基耐药性,并在酵母(酿酒酵母)中产生了另一种羟基化的双氯氟取酸。与CYP81A12/21不同,CYP709C69没有其他除草剂 - 代谢功能,除了推测的cloma-groma Zone激活功能。在日本的另一个BSHR后期水草中也发现了3种除草剂 - 代谢基因的过表达,这表明分子水平的BSHR进化会融合。对P450基因的同义分析暗示它们位于相互独立的基因座,该基因座支持单个反元元素调节3个基因的想法。我们提出,与除草剂 - 代谢基因的转录连接的同时过度表达增强并扩大杂草中的代谢性。来自2个国家的BSHR晚期水草中复杂机制的收敛性表明,BSHR通过在晚期水草中选择保守的基因调节系统而发展。
一氧化二氮(N 2 O)从废水处理厂的排放量,具有变暖的潜力为12 298倍,这是CO 2的降低,对降低其碳足迹构成了重大挑战。当前的13个缓解策略着重于限制氮化和反硝化过程中的n 2 o形成14,但忽略了微生物还原机制。这项研究研究了15种增强一氧化二氮还原酶(NOSZ)活性的潜力,以降低N 2 O至N 2。我们假设16个战略氧操作可以通过连续的NOSZ表达17增强n 2 O的破坏,并在具有优质NOSZ功能的微生物中实现NOSZ激活。我们使用宏基因组学和19种元蛋白质组学评估18个微生物群落功能和代谢调节,以阐明间歇性曝气方案对N 2 O排放的影响。20与周期性缺氧暴露的间歇性充气通过增强菌只菌的代谢活性,从而显着降低了N 2 O的排放,并清除21 71%的氮。nosz 22的活性在系统适应氧气调节后增加了4至6.5倍,将23次与没有缺氧相的连续氧氧化循环相比。后者导致24 N 2 O排放量增加,这是由于NOSZ活性抑制的25甲基杆菌的产生,而N 2 O的产生增加,该甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基的排放量增加了。我们的发现,26个战略氧气操纵可以为N 2 O的破坏提供能量,为27种开发下一代废水处理技术奠定了基础,以减轻N 2 O排放。28