首字母缩略词 含义 AFB 空军基地 AFCEC 空军土木工程中心 AFFF 水成膜泡沫 AFWERX 空军工作项目 ANG 空军国民警卫队 ARNG 陆军国民警卫队 CERCLA 综合环境反应、赔偿和责任法 DoD 国防部 ECO 电化学氧化 EPA 环境保护局 ERA 环境恢复帐户 ESTCP 环境安全技术认证计划 FY 财政年度 GAC 颗粒活性炭 GW 地下水 HALT 热液碱性处理 IDW 调查衍生废物 IX 离子交换 JRB 联合预备役基地 MAC 磁性活性炭 MILDEP 军事部门 NA 不适用 NAS 海军航空站 NAVFAC 海军设施工程系统司令部 NDAA 国防授权法案 NDCEE 国防能源与环境中心 NF 纳滤 PFAS 全氟和多氟烷基物质 PFAST PFAS 泡沫辅助土壤处理 RI 补救调查 RO 逆向渗透 SAFF 表面活性泡沫分馏 SCWO 超临界水氧化 SERDP 战略环境研究与发展计划 SFB 太空军基地 SW 地表水 TBD 待定 TRL 技术就绪水平 UV 紫外线 UV/SGM 紫外线活化硅基颗粒介质 WW 废水
新西兰奥塔哥大学。4。澳大利亚昆士兰州技术大学生物医学科学学院。5。加拿大多伦多大学医学生物物理学系。摘要分枝杆菌II型NADH脱氢酶(NDH-2)是一个有前途的药物靶标,因为它在结核分枝杆菌和其他病原体中的能量代谢中具有核心作用,并且因为缺乏已知的哺乳动物同种同源物。然而,缺乏有关酶如何结合抑制剂的结构信息,使铅化合物具有挑战性。我们使用电子冷冻显微镜(Cryo-EM)来确定来自Smegmatis分枝杆菌的NDH-2的结构,Smegmatis是单独的结核分枝杆菌呼吸的快速增长的非疾病模型,无论是单独的还是与2- cercapto-quinazolinone抑制剂的复杂性。该结构表明,活性分枝杆菌NDH-2是二聚体的,其二聚化界面通过其他细菌属在NDH-2中未发现的延长的C末端A螺旋稳定。二聚体中单体的排列与其他原核NDH-2二聚体所描述的排列不同,而不是由NDH-2在真核生物中形成的二聚体。在甲氨酸酮结合部位中2-羟基硝基唑酮的密度密度表明,抑制剂通过与黄素腺嘌呤二核苷酸辅助因子直接相互作用来阻止甲喹酮的降低。 这些结果揭示了NDH-2的结构元素,可用于设计分枝杆菌酶的特定抑制剂。密度表明,抑制剂通过与黄素腺嘌呤二核苷酸辅助因子直接相互作用来阻止甲喹酮的降低。这些结果揭示了NDH-2的结构元素,可用于设计分枝杆菌酶的特定抑制剂。
摘要:高级高频移动通信技术的快速开发对具有高温抗性和良好介电特性的聚合物材料(包括低介电常数(低d K)和低介电耗散因子(低 - D F)(低 - D F))具有先进的紧急要求。普通聚合物候选物的介电特性相对较差,例如标准聚酰亚胺(PIS)极大地限制了它们在高频区域的应用。在当前工作中,苯佐可唑单位成功地纳入了含有PI的含PI的分子结构中,以提供通过电纺丝的聚(Pibo)纳米膜膜(NFMS)。首先,PI NFM是通过静电纺丝程序制备的,该程序是由2,2'-bis(3,4-二羧基苯基)HexA hexA氟丙烷二 - 半酸酯(6FDA)和包含Ortho-hydrox-ubsuptuts-ubsubsubsubsibsipituts-umbistituts unsipituts-ubsStitutsundutsundute-umsubsistitutsunduntundunduntunduntund的静电性PI树脂制备。 2,2-双[3-(4-氨基苯甲酰胺)-4-羟基苯基]六苯基甲基苯基(P 6FAHP)和2,2- bis [3-(3-氨基苯甲酰胺)-4-羟基苯基] -Hydroxyphenyl] Hexa-fuoropopane(M 6fahp)。然后,将PI NFM在氮中以350℃热脱水,以提供PIBO NFMS。PIBO NFM的平均纤维直径(D AV)为1225 nm的PIBO-1衍生自PI-1(6FDA-P 6FAHP)前体的PIBO-1,PIBO-2的平均纤维直径为pi-1(6fda-p 6fahp),源自PI-2(6fda-m 6faHP)。衍生的PIBO NFM在310℃的玻璃过渡温度(T G S)中表现出良好的热稳定性,而在氮气中,玻璃过渡温度(T G S)和5%的减肥温度(T 5%)高于500℃。d f值在PIBO NFM的0.010〜0.018范围内。PIBO NFM显示出低的介电特征,PIBO-1的D K值分别为1 MHz的频率为1.64和PIBO-2的1.82。
氟化物会对正在发育的人脑产生有害的生化和功能变化。氟化物可能从母体血液中的氟通过胎盘传给胎儿开始。1-3 氟化物能穿过血脑屏障,在脑组织中蓄积的氟可能干扰脑磷脂的代谢,而这与神经元的退化有关。脑磷脂代谢的变化可能与慢性氟中毒的发病机制有关。我们对胎儿大脑的体视学研究显示,大脑皮层、海马锥体、浦肯野细胞和未分化神经母细胞的数值密度和核质比较高。但与非流行区相比,线粒体神经元的平均体积、数值密度和表面密度较低。根据 Rabinowich 的观点 5 ,神经元体积的数值密度增加和未分化神经母细胞是神经组织细胞形态不良的征兆。此外,细胞核-细胞质比增加反映了细胞增殖和成熟,蛋白质合成受到不利影响。在氟中毒大鼠中,RNA 损失会降低 ATP 的产生,从而导致代谢异常。6 综上所述,过量氟化物的这些影响反过来可能会促进血脑屏障的渗透,干扰 RNA 合成和酶促蛋白质代谢,并导致分化缓慢。
Kuber Chauhan kuberchauhan@rathi.com 公司简介 Stallion India Fluorochemicals 成立于 2002 年,总部位于孟买,从事制冷剂、工业气体及相关产品的销售业务。其主要业务包括制冷剂和工业气体的减量、混合和加工,以及预填充罐和小型气瓶/容器的销售。该公司在 Khalapur(马哈拉施特拉邦)、Ghiloth(拉贾斯坦邦)、Manesar(哈里亚纳邦)和 Panvel(马哈拉施特拉邦)拥有四家工厂。这些工厂均经过设计和配备,可在受控环境中储存气体,确保符合安全标准。这些气体可用于各种行业/领域,如空调和冰箱、消防、半导体制造、汽车制造、制药和医疗、玻璃瓶制造、气雾剂和喷雾泡沫。该公司提供各种产品,使公司在行业中脱颖而出。通过利用对客户行业的了解以及在气体和工程方面的技能,该公司提供定制解决方案,帮助企业更好地运作。公司的目标是使运营更加顺畅并提高生产力。同时,它关心环境并帮助减少能源支出。虽然该公司有 20 名员工,但在各个工厂还有 40 名员工,并在需要时有合同工。截至 2024 年 9 月 30 日,该公司为 120 名客户提供服务,而截至 2024 年 3 月 31 日为 171 名。在截至 2023 年 9 月 30 日的六个月以及 2023、2022 和 2021 财年,该公司十大客户的总收入贡献分别为 89.28%、74.77%、72.88% 和 72.11%。该公司的大部分收入来自制冷剂部门,截至 2025 财年第二季度末,该部门占总收入的 85% 以上。该公司在竞争激烈的环境中运营,并与现有参与者竞争,包括 SRF Limited、Gujarat Fluorochemicals Limited 和 Navin Fluorine International Limited。其中一些竞争对手在规模、财务资源、制造能力、研发和其他资源方面都比该公司大。这意味着他们拥有更广泛的产品组合、更大的销售团队、知识产权资产和跨多个部门的更广阔的市场吸引力。氟化合物和特种气体市场一直在增长,预计将以 10.3% 的复合年增长率增长,从 2024 年的 109.63 亿美元增长到 2028 年的 162.23 亿美元。增长主要得益于人口增长和快速城市化。按应用而言,汽车行业是氟化合物的主要用户细分市场。估值与展望 Stallion India Fluorochemicals 从事各种制冷剂和工业气体业务。该公司凭借优质、经济的产品在该领域开辟了独特的空间。该公司在氟化学行业占有 10% 的市场份额,占据着突出地位。凭借其规划好的业务战略和资本支出模式,未来几年盈利改善空间巨大。在估值方面,公司在发行股票后,以 2024 财年收益为基础,市盈率为 48 倍,处于较高水平。我们认为,在行业顺风和业务可扩展性的推动下,该公司的业务改善空间很大。因此,我们建议对 IPO 给予“认购 - 长期”评级。
与其他类型的全氟和多氟烷基物质 (PFAS) 及其在商业中的关键用途。该报告由萨凡纳河国家实验室编写,详细介绍了含氟聚合物对政府和军事利益以及众多美国关键行业的重要性。该报告还得出结论,在许多应用中,没有可行的替代品可以提供相同的独特性能组合。
甲型流感病毒是一类重要的病毒,可引起人类和动物的季节性爆发。猪群是这些病毒的重要宿主,因此它们在流感传播生态学中至关重要。长期以来,猪一直被认为是禽流感病毒和人流感病毒株之间的中间宿主,这是出现可感染人类的新型流感病毒株的关键因素。猪和甲型流感病毒之间的相互作用对公共卫生、农业和全球经济有着深远的影响。了解猪群中甲型流感病毒的生态和地理分布对于监测、早期发现和制定预防或控制流感爆发的策略至关重要。本文探讨了猪中甲型流感病毒的生态动态、这些病毒的地理分布及其对公共卫生系统的潜在影响。此外,它还强调了影响猪中甲型流感病毒传播和进化的传播机制、宿主因素和生态变化。已知的 HA 亚型有 18 种,NA 亚型有 11 种,不同的组合会产生不同的病毒株。猪可以感染多种 IAV 亚型,包括源自人类、鸟类和其他动物的亚型。猪的呼吸系统和受体结构与人类相似,因此它们极易感染流感病毒。这使得猪成为流感病毒重组的理想中间宿主。当猪同时感染禽流感病毒和人流感病毒时,遗传物质可以交换,从而产生新的病毒株 [1,2]。
© 2022 NPS MedicineWise。任何有关复制和权利的疑问请发送至 info@nps.org.au。独立。非营利。基于证据。在创建时已采取合理措施提供准确信息。此信息并非医疗建议的替代品,不应仅依赖其来管理或诊断医疗状况。NPS MedicineWise 对因依赖或使用此信息而造成的任何损失、损害或伤害不承担任何责任(包括疏忽)。阅读我们的完整免责声明。2022 年 9 月发布。NPS2492
基因座层是脑干中的一个小双侧核。它是整个中枢神经系统中去甲肾上腺素(去甲肾上腺素)的主要来源(中枢神经系统中所有去甲肾上腺素的70%),如许多研究所示,它参与了调节大量功能。仅在1960年代单胺的组织荧光方法发展后,仅在开发了组织荧光方法之后才有可能对基因座(LC)的功能及其在人类生活中的重要性进行详细研究。广泛的基因座 - 氯肾上腺素(LC-NE)投影系统调节整个中枢神经系统,并调节感觉处理,运动行为,唤醒和认知过程。对LC的损害以及去甲肾上腺素水平的相关降低涉及广泛的临床条件和病理过程。尽管目前已知有关LC的解剖结构和生理学的许多内容,但它在行为调节,控制睡眠周期的控制,压力反应以及病理状况的发展(例如阿尔茨海默氏病,痴呆,抑郁,自杀行为,自杀行为,慢性创伤性的性脑病和帕金森氏病)中的最终作用并不完全了解。LC的非侵入性可视化可用于鉴别诊断,确定疾病的阶段并预测其病程。研究与各种神经系统疾病的发病机理有关的LC-氯肾上腺素系统的功能障碍,最终可能是基于去甲肾上腺素水平的药理升高开发新治疗方法的基础。在这篇综述中,我们将尝试突出有关核座基因座结构和功能的关键点,并概述其研究的主要方向和前景。