meCA -MRSA通过PCR靶向SA-442物种特异性片段和MECA基因(6,7)。我们使用PCR(8,9),与LUKF/ LUKS-PV基因的隶属关系和存在。我们通过使用磁盘扩散方法对抗生素抗性进行了表型检测,并根据欧洲抗菌敏感性测试版本14.0(10)提供的指南来解释结果。我们使用核素体微生物DNA隔离试剂盒提取DNA(Machery-Nagel,https://www.mn-net.com)。图书馆的准备和全基因组排序被外包给Eurofins(德国体育馆),其中使用了Illumina Novaseq6000技术(https:// www.illumina.com)。读取质量质量并通过使用Shovill v1.0.4(https://github.com/tseemann/shovill)来从头组装,我们通过使用quard v5.0.2(https://quast.sourceforge.net)评估了组装质量。We performed typing by using MLSTFinder v2.0.9 and spaTyper (Genomic Epidemiology Cen- ter, http://www.genomicepidemiology.org) and identified resistance and virulence genes by using ResFinder 4.1 and VirulenceFinder v2.0.3 (Genomic Epidemiology Center) (identity >95%) and confirmed resistance genes通过使用卡3.2.9。(https://card。mcmaster.ca)。我们通过使用bakta 1.9.1(https://bakta.computational.bio)来表征转座TN 554的遗传环境。要比较主体,我们使用了国家生物技术信息中心(NCBI)BLASTN工具(https:// bast。ncbi.nlm.nih.gov)。,我们通过使用Roary以前出版的繁殖(6)(Roary v3.13.0,Gubbins v2.4.1和SNP-Dist v0.7.0; https:/https://github.com)在所有CC398 PVL-Posistive rypseques tripseq:
摘要:具有表型读数的细胞测试方法经常用于毒性筛选。但是,缺少关于如何验证命中结果以及如何将此信息与其他数据整合以进行风险评估的指导。我们在此介绍此类程序,并以基于神经嵴细胞 (NCC) 的吡氧菌酯发育毒性案例研究为例。在 UKN2 检测中筛选了一个潜在环境毒物库,该检测同时测量 NCC 中的迁移和细胞毒性。几种被称为线粒体呼吸链复合物 III 抑制剂的甲氧基菌酯杀菌剂成为特定命中结果。从这些中,吡氧菌酯被选为从基于细胞的测试到毒理学预测的路线图的典范。经过严格的确认测试,开发了一条不良结果途径以提供可测试的毒性假设。机制研究表明,在 24 小时预暴露后,氧消耗率在亚 µ M 浓度的啶氧菌酯下受到抑制。在迫使细胞依赖线粒体的测定条件下,迁移在 100 nM 范围内受到抑制。生物动力学模型用于预测细胞内浓度。假设口服啶氧菌酯,与可接受的每日摄入量一致,基于生理的动力学模型表明大脑浓度可能达到 0.1–1 µ M。利用这种广泛的危害和毒代动力学数据,我们计算出最低体外出发点和最高预测组织浓度之间的暴露范围≥80。因此,我们的研究体现了一种命中跟踪策略,并为下一代风险评估铺平了道路。
摘要:奎宁是一种历史上重要的天然产物,其中含有甲氧基群,假定在后期途径阶段掺入。在这里,我们表明奎宁和相关的金chona生物碱中的甲氧基群被引入起始底物色素。用金chona植物的喂养研究明确地表明,5-甲氧氨基胺被用作植物中的奎宁生物合成中间体。我们发现了编码负责的氧化酶和甲基转移酶的生物合成基因,并使用这些基因重建了尼古替尼亚尼古替尼亚氏菌的Cinchona生物碱生物合成途径的早期步骤,以产生甲氧基和甲氧基甲氧基氧化氧化氧化氧化物碱性碱的混合物。重要的是,我们表明,色胺和5-甲氧氨基胺底物的共发生,以及下游途径酶的底物滥交,可以平行地形成甲氧基化和脱甲氧基化的甲氧基化和脱甲氧基化的生物碱。
迄今为止,许多基于培养和基于基因工程的策略、靶向基因操作技术(如启动子工程和 CRISPR 介导的基因编辑)和非靶向方法(如核糖体工程和调节基因的激活/失活)已经使得有效激活隐蔽的 SM-BGC 成为可能 (7,8)。但与上述技术相比,通过共培养微生物来增加次级代谢产物的产生具有简单的优点,因为它不需要事先了解 smBGC 或基因工程工具。共培养复制了生态压力,例如物种间竞争期间的营养缺乏,并导致鉴定出几种完美的生产者和诱导者组合,这些组合可有效促进新型生物活性化合物的合成。
耐甲氧西林金黄色葡萄球菌(MRSA)是一种革兰氏阳性的细菌病原体,继续对我们社会中当前的公共卫生系统构成严重威胁。MRSA中对β-内酰胺抗生素的高度抗性归因于青霉素结合蛋白2a(PBP2A)的表达,这会催化细胞壁交联。根据大量研究报告,已知PBP2A蛋白的活性受到与细胞壁交联的活性位点不同的变构位点的调节。在这里,我们对包含1,3,4-氧化唑核的113种化合物进行了筛选,以设计针对PBP2A变构位点的新共价抑制剂并建立其结构活性关系。在初始筛选中鉴定出的磺酰氧化二唑化合物的立体选择性合成导致细胞抑制活性的最大增强。基于基于PEG的药膏的磺酰基黄烷二唑的化合物,对人细胞的毒性测试低(CC 50:>78μm),不仅在小鼠皮肤伤口感染模型中,而且还针对抗氧蛋白抗抗性临床分离型MRSA(IC 50ous)(IC 50oubious),表现出了有效的抗菌作用。此外,利用LC-MS/MS和硅内方法的其他研究清楚地支持了通过亲核芳香族反应(S NAR)反应(S NAR)的变构位点共价结合机制,以及与PBP2A主要活性位点关闭的关联。
由126种在全球范围广泛的物种组成,在热带东南亚国家,例如印度尼西亚,马来西亚,缅甸,缅甸,柬埔寨,泰国,泰国,甚至是南亚地区,即印度,即印度。1,2 Kaempferia Galanga L.在印度尼西亚被称为Kencur,已在经验上被约109个族裔使用。在印度尼西亚,Kaempferia Galanga出现在苏门答腊,爪哇,卡利曼丹,东努萨·坦加拉,苏拉威西和马卢库的几个地区。3,它排名第16位是使用最广泛的药用植物。4 Kaempferia galanga根茎传统上被用作抗内部的弹药,镇痛,抗菌,抗氧化剂,杀性性和血管肌。5 - 14 kaempferia galanga L.的根茎和叶子具有治疗伤口,头痛,溃疡,普通感冒,咳嗽,哮喘和乳腺癌的特性。15 - 17在2014年,Kumar报告说,Kaempferia Galanga L.的根茎含有多达50个挥发性油15 - 17在2014年,Kumar报告说,Kaempferia Galanga L.的根茎含有多达50个挥发性油
1部门食品安全,联邦风险评估研究所(BFR),Max-Dohrn-Strasse 8-10,10589柏林,德国; sarah.weissenberg@live.com(s.y.w.); anke.ehlers@bfr.bund.de(A.E。); alfonso.lampen@bfr.bund.de(A.L。)2营养毒理学系,德国人类营养研究所(DIFE),Potsdam-Rehbrücke,Arthur-Scheunert-Allee 114-116,145558 Nuthetal,德国; fabian.schumacher@fu-berlin.de(F.S.); wolfram.engst@web.de(W.E.); meinl@dife.de(W.M.)3生化环境致癌学院(BIU),Gernot Grimmer-Foundation教授,德国Grosshansdorf,Lurup 4,22927; albrecht.seidel@biu-grimmer.de 4药房研究所,弗雷伊大学柏林,柏林,科尼金 - 路易斯 - 斯特拉斯2-4,14195柏林,德国柏林 *通讯:glatt@dife.de.de;电话。: +49-30-691-6846†在研究中进行研究时。
电导调节剂(CFTR)(Moran,2017)和细胞内钙离子(Ca 2+)激活Anoctamin-1(Ano-1,TMEM16A)(Caputo等,2008)。当前的研究重点是通过增加细胞外质子(H +)浓度激活的Cl-通道。所谓的质子激活外部整流阴离子通道(PAORAC)或酸敏感的外部整流(ASOR)通道在细胞外酸性后介导Cl - 伏布(Lambert and Oberwinkler,Wang等,2007; Wang et al。,2007; Ma等)。tmem206是Paorac/ASOR的分子成分,在2019年已被两个独立研究小组鉴定出来(Ullrich等,2019; Yang等,2019)。此外,最近已经解决了TMEM206的结构:TMEM206形成一个同型通道,每个单体具有两个跨膜跨度的螺旋(Ruan等,2020; Deng等,2021)。根据人类蛋白质地图集,TMEM206显示出几乎普遍存在的mRNA表达,在大脑,肾脏和淋巴组织中最突出的表达(人类蛋白质Atlas,2023)。尚未完全理解其生物学功能。在亚细胞水平上,据报道TMEM206的Cl-电导率可预防内体高酸性(Osei-Owusu等,2021)。此外,已经发现TMEM206有助于大肺炎的收缩,这是一种在免疫和癌细胞中特别重要的内体类型的内体。TMEM206的破坏可降低大细胞体的分辨率,并增加癌细胞的白蛋白依赖性生存率(Zeziulia等,2022)。Wang等。Wang等。除了在囊泡中的丰度外,TMEM206还定位于质膜。在质膜中,据报道TMEM206有助于小鼠,Hela和Hek293细胞的培养神经元细胞中酸诱导的细胞死亡(Wang等,2007; Sato-Numata等,2014; Ullrich等,2019)。 提出TMEM206在诸如缺血性中风和癌症之类的病理中起作用,pH可能会降至6.5以下(Xiong等,2004; Kato等,2013; Thews和Riemann,2019)。 尽管在室温下激活阈值低于pH 5.5,但在37°C时,其转移到〜ph 6.0(Sato-Numata等,2013),因此TMEM206可能在病理生理条件下被激活。 人体内的某些隔室还显示接近TMEM206激活阈值的pH值。 在结肠中,pH值范围从盲肠中的pH值5.7在直肠中缓慢增加到6.7(Fallingborg,1999),因此TMEM206也可能在一般的结肠上皮和结直肠癌中发挥作用,pH值得低于生理条件。 因此,我们想知道TMEM206是否在人类结直肠癌细胞中表达,以及它是否有助于酸诱导的细胞死亡。 为了更好地了解TMEM206对细胞功能的贡献,需要药理学工具。 对通道的药理抑制避免了敲除或敲除的补偿机制。 此外,菲洛莱汀(Wang等,2007)和硫酸妊娠(PS)(Drews等,2014)被报道为PAORAC/ASOR/TMEM206抑制剂,但是,菲律宾是>在质膜中,据报道TMEM206有助于小鼠,Hela和Hek293细胞的培养神经元细胞中酸诱导的细胞死亡(Wang等,2007; Sato-Numata等,2014; Ullrich等,2019)。提出TMEM206在诸如缺血性中风和癌症之类的病理中起作用,pH可能会降至6.5以下(Xiong等,2004; Kato等,2013; Thews和Riemann,2019)。尽管在室温下激活阈值低于pH 5.5,但在37°C时,其转移到〜ph 6.0(Sato-Numata等,2013),因此TMEM206可能在病理生理条件下被激活。人体内的某些隔室还显示接近TMEM206激活阈值的pH值。在结肠中,pH值范围从盲肠中的pH值5.7在直肠中缓慢增加到6.7(Fallingborg,1999),因此TMEM206也可能在一般的结肠上皮和结直肠癌中发挥作用,pH值得低于生理条件。因此,我们想知道TMEM206是否在人类结直肠癌细胞中表达,以及它是否有助于酸诱导的细胞死亡。为了更好地了解TMEM206对细胞功能的贡献,需要药理学工具。对通道的药理抑制避免了敲除或敲除的补偿机制。此外,菲洛莱汀(Wang等,2007)和硫酸妊娠(PS)(Drews等,2014)被报道为PAORAC/ASOR/TMEM206抑制剂,但是,菲律宾是tmem206受到常见的Cl-通道抑制剂DID(4,4' - 二硫代硫代氨基-2,2,2'-省二硫酸)的抑制作用对于TMEM206(Liantonio等,2007; Guinamard等,2013)。
三天线 N-乙酰半乳糖胺 (GalNAc 3 ) 簇已证明受体介导的配体结合反义药物摄取的效用,这些药物靶向肝细胞表达的 RNA。GalNAc 3 结合的 2 ¢ - O - 甲氧乙基 (2 ¢ MOE) 修饰的反义寡核苷酸 (ASO) 已证明比未结合形式具有更高的效力,以支持较低剂量获得相同的药理作用。我们利用 Ionis 集成安全数据库比较了四种 GalNAc 3 结合和四种相同序列未结合的 2 ¢ MOE ASO。该评估评估了来自八项随机安慰剂对照剂量范围 1 期研究的数据,涉及 195 名健康志愿者(79 名 GalNAc 3 ASO,24 名安慰剂;71 名 ASO,21 名安慰剂)。两组 ASO 临床实验室测试中未发现异常阈值发生率的安全性信号。但是,与安慰剂相比,未结合 2 ¢ MOE ASO 组高剂量范围内的平均丙氨酸转氨酶水平显著升高。与未结合 ASO 组相比,GalNAc 3 -结合 ASO 组导致局部皮肤反应的皮下注射平均百分比低 30 倍(0.9% vs. 28.6%),未发生流感样反应(0.0% vs. 0.7%)。未结合 ASO 组中的三名受试者(4.2%)停止服药。在健康志愿者的短期临床数据比较中,GalNAc 3 -结合 2 ¢ MOE ASO 的整体安全性和耐受性特征明显改善。
抽象背景NHS的目标是在2032年将其碳排放量减少80%。其策略的一部分是使用对环境有害影响较小的药物。一氧化二氮目前在NHS内广泛使用。一氧化二氮,如果释放到大气中,则具有重大的环境影响。通过penthrox“绿口哨”装置传递的甲氧基氟烷是一种短作用的镇痛药,被认为与一氧化二氮相比具有较小的环境影响。使用制造商,在线资源和LCIA库存生产的数据,对penthrox制造和使用的所有产品和过程的生命周期影响评估(LCIA)。在OpenLCA中分析了这些数据。影响数据与现有的关于一氧化二氮和硫酸吗啡的数据进行了比较。结果该LCIA发现penthrox具有0.84 kg二氧化碳等效的气候变化效应(CO 2 E)。原材料和生产过程促成了penthrox在所有类别中的大部分影响,原材料占气候变化总影响的34.40%。penthrox的气候变化影响减少了CO 2 E的117.7倍。7 mg的100 mg/100 mL硫酸静脉硫酸盐的气候变化效应为0.01 kg CO 2 e。结论该LCIA表明,当专门研究气候变化影响时,penthrox设备的总体“摇篮到宽度”环境影响要好于一氧化二氮。对静脉注射吗啡等效剂量的气候变化影响甚至更低。切换到使用吸入的甲氧基氟烷,而不是在某些临床情况下使用一氧化二氮可以帮助NHS达到其碳排放降低靶标。