甲烷减排技术 (MMT) 多年期计划 (MYPP) 的重点是提高整个石油和天然气基础设施的可靠性和弹性,并减少甲烷排放。MMT 计划旨在:(1) 开发先进的管道材料、管道传感器和系统、管道数据管理和计算工具、管道内检查和修复技术以及压缩机和发动机甲烷漏失减缓技术;(2) 开发先进的模块化天然气转化技术,可部署在井口、天然气处理设施和运输基础设施附近,以便有效利用原本燃烧或搁浅的天然气;(3) 开发先进的甲烷传感器技术,以检测和量化生产油田、管道、基础设施设备、储存设施和废弃油井的甲烷排放;(4) 开发和验证甲烷排放检测和测量技术,以加速采用最准确和最具成本效益的方法,包括尚未获得大量市场份额的卓越甚至变革性技术; (5)建立一个由行业和学术界支持的数据中心,该中心将利用包括人工智能在内的数据分析来支持整个石油和天然气价值链的多尺度排放数据的量化和验证。
摘要:沼气正在成为运动中减少我们在地球上的碳足迹的主食的道路。沼气是来自各种来源的可再生能源。一旦在厌氧消化池内形成沼气,就可以处理以去除不需要的污染物,例如H 2 O,Co 2和H 2 S.在本质上,当细菌通过天然生物化学过程被细菌分解时,形成沼气。随着厌氧消化剂的利用,这种自然过程现在被大型和小型沼气生产商复制。
作为甲烷非氧化分解/甲烷热解 (CH 4 ⇌ C + 2 H 2 ) 产生清洁氢气和仅固体碳的有前景的催化剂组合物,研究了 MgO 载体上的镍和钼的组合。在刻意降低 Ni 含量和强金属-载体相互作用的情况下,制备了 7%Ni4% Mo/MgO 和 7%Ni12%Mo/MgO 催化剂以及单金属参比物。在还原状态和甲烷分解试验后,使用 TPR、XRD、TEM、XPS 和拉曼光谱进行结构分析。在 i) 温度斜坡下的固定床反应器中高度稀释的 CH 4 流中和 ii) 在 800 ◦ C 下使用水平反应器在 50% CH 4 /Ar 中研究了催化性能。在两种条件下都观察到了 Mo 和 Ni 的协同相互作用。结果表明,由于Mo含量低,失活与合金偏析有关,而7%Ni12%Mo/MgO样品中单个金属颗粒的Mo/Ni~1组成更稳定,无偏析,从而具有良好的活性和高的碳纳米管产率。
图1化石燃料,农业和废物占全球甲烷(CH 4)来源(左图)的60%,其余的来自自然来源。建立了良好的方法,以减少其来源(中心面板)的人为甲烷排放的方法可能不足以限制近期变暖。提出的用于潜在从大气中去除甲烷的技术,主要是通过加速其转换为CO 2(右图),包括甲烷反应堆,甲烷浓缩器,表面处理,生态系统摄取增强和大气氧化的增强。
在英国,沼气主要是通过厌氧消化(AD)生产的,该过程在没有氧气的情况下通过微生物分解有机材料。该沼气可以升级为生物甲烷,并注入气电网中,以直接取代化石燃料甲烷。生物甲烷是一种柔性且适应能力的燃料,可以导致脱碳难以缓解的部门,包括重型运输和机械,工业过程和农业。由于使用了“湿废物”,例如不可避免的食物浪费,泥浆,肥料和污水量,AD提供了关键的废物管理工具和解决方案,以使废物行业脱碳。在农业中,AD可以通过将化石肥料用消化酸盐(一种有机肥料)取代,在创造循环经济中发挥作用。此外,它有可能通过在生产和燃烧点上通过碳捕获技术传递负排放,这对于满足净零是至关重要的。
国际行动:新西兰Aotearoa致力于与他人合作,以支持更大,更快的全球排放减少。国际气候变化倡议旨在减少新西兰Aotearoa涉及的甲烷排放,在第三节中概述了表1(第9-11页)。国内行动:新西兰Aotearoa已设定了减少排放的目标。到2030年,我们旨在将生物学排放量降低10%以下,并将净排放量低于2005年总水平50%。 到2050年,我们旨在将生物甲烷排放量降低24%至47%以下,并实现所有其他温室气体的净零排放。 Aotearoa新西兰采取的行动为实现这些目标所采取的措施在第三节中概述了表2(第14-17页)。到2030年,我们旨在将生物学排放量降低10%以下,并将净排放量低于2005年总水平50%。到2050年,我们旨在将生物甲烷排放量降低24%至47%以下,并实现所有其他温室气体的净零排放。Aotearoa新西兰采取的行动为实现这些目标所采取的措施在第三节中概述了表2(第14-17页)。
EPA的最终甲烷规则 - 合并高级技术和排放数据,以减少Carrie Jenks,Hannah Dobie和Richard Leahy于2023年12月14日在迪拜(COP28)的联合国气候会议上,降低了石油和天然气部门的甲烷排放,Richard Leahy于2023年12月2日在迪拜(COP28)举行,宣布了环境保护委员会(EPA)宣布的规则(Epa)宣布的规则和规则。根据《清洁空气法》第111条(CAA)第111条(“最终规则”)的石油和天然气运营中的化合物(VOC)。1的最终规则是该机构的多年工作,2拜登管理,石油和天然气运营商,技术开发商,科学家,法律和政策专家以及其他利益相关者制定法规,以实现重大的甲烷排放量,并利用更好地检测和减少甲烷排放的先进技术。EPA预测,最终规则将导致大约5800万吨避免的甲烷排放量,从2024年到2038年,还有1600万吨VOC,5.9万吨有害空气污染物(HAPS)。3 EPA还估计,最终规则将导致石油和天然气部门的甲烷排放量减少约80%,而不是没有规则的预测。4最终规则中有几个组成部分有助于这些重要的排放减少,包括:
然而,我们可以回顾近几个月来国家层面所做的事情,在此期间,沿着转型和能源安全的道路采取了一些步骤,这可能是克服任何供应危机的重要杠杆。德拉吉政府在其任期的最后几个月里完成了一系列文件,并批准了一些措施,这些措施在某种程度上在国家层面上预见到了欧洲会议上所支持的内容:一方面对天然气价格设定上限,另一个是遏制能源消耗。事实上,《能源释放法令》规定以受控价格向可中断的工业客户、中小企业和岛屿(撒丁岛和西西里岛)用户出售电力:固定价格等于每兆瓦时 210 欧元,但可以根据实际情况进行修改。布鲁塞尔将建立的迹象。此外,《节能法令》还明确了冬季限用消费的方法。
图 1. 2021 年纽约州裸眼井和封堵井数量 ...................................................................... 3 图 2. 纽约州每年完工的石油和天然气井数量 .............................................................. 4 图 3. 2021 年产气井的年龄分布 ...................................................................................... 5 图 4. 纽约州的石油和天然气产量 ...................................................................................... 6 图 5. 2021 年累计石油和天然气总产量百分比与纽约州油井数量之间的关系 ............................................................................. 7 图 6. 2021 年纽约州石油和天然气井位置和产量 ............................................................................. 8 图 7. 纽约州及周边各州的石油和天然气井、天然气加工厂、天然气管道、天然气地下储存和页岩气田位置 ................................................................................................................ 9 图 8. 纽约州天然气公用事业服务区 ............................................................................................. 10 图 9. 石油和天然气系统图 10. 确定天然气系统逸散性 CH 4 排放估算方法的决策树.........................................................................................................................................27 图 11. 确定石油系统逸散性 CH 4 排放估算方法的决策树.........................................................................................................................................28 图 12. 1990 年至 2021 年纽约州的 CH 4 总排放量(AR5 GWP 20)....................................................................................................................108 图 13. 1990 年至 2021 年纽约州的上游 CH 4 排放量(AR5 GWP 20)....................................................................................................108 图 14. 1990 年至 2021 年纽约州的中游 CH 4 排放量(AR5 GWP 20)....................................................................................................................109图 16. 2021 年下游、中游和上游 CH4 排放量占总排放量的百分比 ............................................................................................................. 111 图 17. 2021 年纽约州按来源类别并按上游、中游和下游阶段分组的 CH4 排放量(AR5 GWP 20) ............................................................................................. 112 图 18. 前五大排放源类别中 CH4 排放量的百分比 ............................................................................................. 113 图 19. 2021 年纽约州各县 CH4 排放量地图(AR5 GWP 20) ............................................................................................. 124 图 21. 帝国大厦发展公司确定的纽约州经济区域.... 131 图 22.2021 年纽约州各经济区域的 CH 4 排放量(AR5 GWP 20) ...... 132 图 23. 使用 AR5 GWP 20 CH 4 换算因子比较 1990 年和 2021 年纽约州源类别 CH 4 排放量 ................................................................................................................................ 134 图 24. 图 ES-11 的复制品(EPA 2023),显示能源和其他部门排放的时间序列趋势 ................................................................................................................................ 135 图 25. 包括最佳估计值和上下限的总排放量(AR5 GWP 20) ................................................................................................................................................ 141 图 26. 包括上限和下限的上游排放量(AR5 GWP 20) ............................................................................................................................................. 142 图 28. 包括上限和下限的下游排放(AR5 GWP 20)...................................................................................................... 142