1。马萨诸塞州波士顿波士顿儿童医院神经病学系2。 马萨诸塞州波士顿儿童医院儿科,遗传学和基因组学系 马萨诸塞州波士顿哈佛医学院生物医学信息学系4. 美国马萨诸塞州波士顿的哈佛医学院和马萨诸塞州医学院和马萨诸塞州的健康科学与技术计划5. 霍华德·休斯医学院,雪佛兰大通,马里兰州6。 生物学和生物医学科学研究生课程,哈佛医学院,马萨诸塞州波士顿7。 Ph.D. 日本伊巴拉基塔库巴大学的人类生物学计划,日本8。 生命与环境科学研究所,杜斯库巴大学,杜斯库巴大学,日本伊巴拉基,日本†这些作者为这项工作做出了同样的贡献。 *信件:Christopher.walsh@childrens.harvard.edu; peter_park@hms.harvard.edu马萨诸塞州波士顿波士顿儿童医院神经病学系2。马萨诸塞州波士顿儿童医院儿科,遗传学和基因组学系马萨诸塞州波士顿哈佛医学院生物医学信息学系4.美国马萨诸塞州波士顿的哈佛医学院和马萨诸塞州医学院和马萨诸塞州的健康科学与技术计划5.霍华德·休斯医学院,雪佛兰大通,马里兰州6。生物学和生物医学科学研究生课程,哈佛医学院,马萨诸塞州波士顿7。Ph.D. 日本伊巴拉基塔库巴大学的人类生物学计划,日本8。 生命与环境科学研究所,杜斯库巴大学,杜斯库巴大学,日本伊巴拉基,日本†这些作者为这项工作做出了同样的贡献。 *信件:Christopher.walsh@childrens.harvard.edu; peter_park@hms.harvard.eduPh.D.日本伊巴拉基塔库巴大学的人类生物学计划,日本8。生命与环境科学研究所,杜斯库巴大学,杜斯库巴大学,日本伊巴拉基,日本†这些作者为这项工作做出了同样的贡献。*信件:Christopher.walsh@childrens.harvard.edu; peter_park@hms.harvard.edu
Erin Hassett 1,Gil Bohrer 2,Lauren Kinsman-Costello 3,Yvette Onyango 2,Talia Pope 3,Chelsea 3 Smith 3,Justine Missik 2,Erin Eberhard 3,Jorge Villa 4,Jorge Villa 4,Steven E. McMurray 5,Tim Morin 1,Tim Morin 1 4 5 >
图1化石燃料,农业和废物占全球甲烷(CH 4)来源(左图)的60%,其余的来自自然来源。建立了良好的方法,以减少其来源(中心面板)的人为甲烷排放的方法可能不足以限制近期变暖。提出的用于潜在从大气中去除甲烷的技术,主要是通过加速其转换为CO 2(右图),包括甲烷反应堆,甲烷浓缩器,表面处理,生态系统摄取增强和大气氧化的增强。
•存在有希望的技术措施,其中饲料添加剂3-硝基丙醇是领先者,在瘤胃中降低甲烷的产生功效,对动物生产力没有不利影响。但是,添加剂的长期影响需要更多的研究。•由于需要定期补充,因此对绝对排放产生影响的添加剂目前在放牧系统中无效。正在开发各种农业牲畜系统中有效的措施。通过选择性育种或疫苗接种的口服缓释技术,基因组编辑和永久性缓解甲烷。•缺乏为农民实施缓解措施的激励措施,这阻止了广泛的实施。需要适当的经济政策来促进技术措施的利用。这种新型政策由新西兰和丹麦提出,分别在2025年和2027年期间实施。
− 建立明确的全球统一监管框架和 MRV 要求,以确保公平竞争和可信的温室气体排放报告,从而加快甲烷抑制剂(饲料补充剂)的推广,这在短期内可以立即显著减少零放牧和饲料补充放牧畜牧生产系统中的甲烷排放量。此外,我们建议研究机构和国际组织(例如 OECD、ISO)以及私营部门和碳市场标准(例如 Verra、Gold Standard、Plan Vivo)之间的合作,以开发和标准化具有成本效益的方法来评估饲料添加剂的标准,适用于不同的社会经济和环境背景。
今年,我们决定将披露与一份专业报告相结合,详细介绍了ENI对减少甲烷排放的承诺。消除石油和天然气运营中的甲烷排放被认为是有意义的近期溶液,并且是一种脱碳化天然气使用的关键杠杆,从而促进了有序和公平的过渡。本报告描述了大约十年前开始的轨迹,其中Eni培养了专业知识和知识,提出了最佳实践,并开发了用于监测,验证和报告甲基苯丙胺排放的技术。因此,ENI已成为在我们运营的资产中实施甲烷管理计划的先驱。我很自豪地说,今天,上游甲烷强度约为0.06%,大大低于0.2%的部门最佳实践,我们是行业领导者。在过去的六年中(2018-2023),我们不仅取得了比例的更改 -
这项工作介绍了3-甲基-2-恶唑烷酮(Jeffsol®Meox)作为N-甲基-2-吡咯烷酮(NMP)的替代溶剂,用于制造锂离子电池。nmp是聚乙烯二氟化物(PVDF,一种常见的粘合剂材料)的良好溶剂,并且具有高沸点(202°C),从而使电极浆液逐渐干燥以形成同质涂层。但是,NMP具有抗毒性效果,其使用正在引起立法压力的增加。对于电池制造行业来说,找到更良性的替代方案将是有利的。在少数几种容易溶解PVDF的溶剂中,诸如二甲基甲酰胺之类的示例也具有显着毒性,因此需要进一步研究才能找到可靠的替代溶剂系统。我们表明,Jeffsol®Meox(225°C沸点)能够在可及温度(40°C - 50°C)下溶解PVDF,并且以相似的活性材料比例溶解PVDF:活性材料的比例相似:粘合剂:溶剂,Jeffsol®Meox和NMP的shmp shorderies and and and and and sherries均以5-6 pa.s的速度产生5-6 pa.s的速度。 。使用Jeffsol®Meox制造和NMP制造的阴极涂层形成的细胞表现出可比的电化学性能。©2024作者。由IOP Publishing Limited代表电化学学会出版。这是根据Creative Commons Attribution 4.0许可(CC by,http://creativecommons.org/licenses/ by/4.0/)分发的开放式访问文章,如果原始工作适当地引用了原始作品,则可以在任何媒介中不受限制地重复使用工作。[doi:10.1149/1945-7111/ad77b1]
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
天然气报告计划(GHGRP)w截至2024年1月1日生效的W级。ngsi协议版本2.0并未将修订版的修订纳入了W的第部分,该修订于2024年5月在联邦公报上发布并发布。这些修订大多数在2025年1月1日生效,某些计算规定于2024年7月15日生效。此较早的生效日期包括某些可选的计算规定,这些规定允许记者从报告年份(RY)2024排放开始的某些排放来源提交经验数据。2025年1月1日之后,其中一些可选的计算规定将成为强制性的,并将适用于2025年RY的排放,这些排放量必须由2026年3月31日的报告截止日期报告给EPA。版本2.0还没有将GHGRP修订纳入W与W子部分以外的其他小部分,该修订于2024年4月最终确定并在联邦公报上发布,并于2025年1月1日开始生效,从RY 2024排放开始。这些最终的GHGRP修订将纳入NGSI协议及其随附的报告模板的后续更新中。
•估计电子甲烷的成本结构在很大程度上取决于氢的产生。•稳定且廉价的可再生能力的采购是关键。生产地点选择是最重要的。•随后是技术因素,例如大规模生产和高级高效过程。