皮肤镜图像用于黑色素瘤手术切除。Int J Comput Assist Radiol Surg 2017;12:1021-30。2. Esteva A、Kuprel B、Novoa RA、Ko J、Swetter SM、Blau HM 等。使用深度神经网络对皮肤癌进行皮肤科医生级别分类。Nature 2017;542:115-8。3. Tan E、Lin F、Sheck L、Salmon P、Ng S。一种实用的决策树模型,用于预测眼周基底细胞癌切除后重建手术的复杂性。J Eur Acad Dermatol Venereol 2017;31:717-23。4. Chichi N、Takwoingi Y、Dinnes J、Matin RN、Bassett O、Moreau JF 等。智能手机应用程序用于对皮肤病变疑似黑色素瘤的成年人进行分类。Cochrane Database Syst Rev 2018;12:CDO13192。5. Hekler A、Utikal JS、Enk AH、Berking C、Klode J、Schadendorf D 等人。使用深度神经网络对组织病理学黑色素瘤图像进行病理学家级别分类。Eur J Cancer 2019;115:79-83。6. Mukherjee R、Manohar DD、Das DK、Achar A、Mitra A、Chakraborty C。用于可重复慢性伤口评估的自动组织分类框架。Biomed Res Int 2014;2014:851582。 7. Emam SD、Du AX、Surmanowicz P、Thomsen SF、Greiner R、Gniadecki R。使用机器学习预测生物制剂对银屑病患者的长期疗效。Br J Dermatol 2020;182:1305-7。8. de Guzman LC、Maglaque RP、Torres VM、Zapido SP、Cordel MO。用于湿疹皮肤病变检测的多模型、多级人工神经网络的设计和评估。在:2015 年第三届人工智能、建模和仿真国际会议 (AIMS),马来西亚哥打京那巴鲁;2015 年。第 42-7 页。可从以下网址获取:https://www.ieeexplore.ieee.org/document/7604549。[最后访问时间为 2019 年 12 月 18 日]。 9. Han SS, Park GH, Lim W, Kim MS, Na JI, Park I, 等. 深度神经网络在甲癣诊断中表现出与皮肤科医生相当甚至更好的表现:通过基于区域的卷积深度神经网络自动构建甲癣数据集。PLoS One 2018;13:e0191493。10. Zang Q, Paris M, Lehman DM, Bell S, Kleinststreuer N,
摘要 指甲是角质结构。指甲板负责药物的渗透。由于指甲板足够硬,药物很难渗透,只有一小部分外用药物能够渗透过去。因此,药物无法达到有效的治疗浓度。指甲板可能由于光泽度降低而出现异常。指甲床受到影响、血液供应减少、指甲床的物理或化学特性降低。因此,各种疾病都可能因此发生。1 口服疗法伴有全身副作用和药物相互作用,而外用疗法则受限于指甲板的低渗透率。这些疾病可以通过指甲药物输送系统达到所需的治疗药物浓度来治愈。人类指甲不仅具有保护和装饰作用,还可以被视为药物输送的替代途径,尤其是在治疗甲真菌病或牛皮癣等指甲疾病方面。物理技术(手动和电动指甲磨损、酸蚀、激光消融、微孔、应用低频超声波和电流)和化学物质(硫醇、亚硫酸盐、过氧化氢、尿素、水、酶)已证明能增强指甲的反应性。为了有效地进行局部治疗,必须增强真菌药物的渗透性。3 这可以通过使用物理技术或化学药剂破坏指甲板来实现。或者,可以通过离子电渗疗法或通过在载体中配制药物来促进药物渗透到完整的指甲板中,从而使药物从载体中分离出来并进入指甲板。关键词:指甲药物输送、甲癣、离子电渗疗法、牛皮癣。
5. Han SS, Park GH, Lim W 等人。深度神经网络在甲癣诊断方面表现出与皮肤科医生相当甚至更好的表现:通过基于区域的卷积深度神经网络自动构建甲癣数据集。PLoS ONE。2018;13:e0191493。6. Seite S、Khammari A、Benzaquen M、Moyal D、Dreno B。一种用于从智能手机照片中对痤疮进行分级的人工智能算法的开发及其准确性。Exp Dermatol。2019;28:1252-1257。doi:10.1111/exd.14022 7. Min S、Kong HJ、Yoon C、Kim HC、Suh DH。使用数字图像处理开发和评估自动痤疮病变检测程序。皮肤研究技术。 2013;19:e423-e432。doi:10.1111/j.1600-0846.2012.00660.x 8. Gustafson E、Pacheco J、Wehbe F、Silverberg J、Thompson W。一种从电子健康记录中识别成人特应性皮炎的机器学习算法。IEEE Int Conf Healthc Inform。2017;83-90。doi:10.1109/ICHI.2017.31 9. De Guzman LCD、Maglaque RPC、Torres VMB、Zapido SPA、Cordel MO。用于湿疹皮肤病变检测的多模型、多层次人工神经网络的设计和评估。2015 年第三届人工智能、建模和仿真国际会议(AIMS)。2015:42-7。 10. Guimarães P、Batista A、Zieger M、Kaatz M、Koenig K。多光子断层扫描中的人工智能:特应性皮炎诊断。Sci Rep。2020;10:7968。11. Wu H、Yin H、Chen H 等人。一种基于深度学习的图像自动诊断炎症性皮肤病的方法。Ann Transl Med。2020;8(9):581。doi:10.21037/atm.2020.04.39 12. Meskó B、Hetényi G、Győrffy Z。人工智能能否解决医疗保健领域的人力资源危机?BMC Health Serv Res。2018;18:545。 doi:10.1186/s12913-018-3359-4 13. Bullock, J.、Luccioni, A.、Pham, KH、Lam, CSN、Luengo-Oroz, M. (2020)。绘制人工智能应对 COVID-19 应用前景图。ArXiv。2020 年。https://arxiv.org/abs/2003.11336v1 14. Hollister M。人工智能可以帮助应对 COVID-19 危机 - 但正确的人力投入是关键。世界经济论坛,3 月 30 日。Taulli, T. (2020)。正在抗击 COVID-19 大流行的 AI(人工智能)公司。福布斯,2020 年 3 月 28 日。 15. Genovese G、Moltrasio C、Berti E、Marzano AV。与 COVID-19 相关的皮肤表现:当前知识和未来展望。皮肤病学。2021;237:1-12。16. Freeman EE、McMahon DE、Fitzgerald ME 等人。美国皮肤病学会 COVID-19 登记处:COVID-19 时代的众包皮肤病学。美国皮肤病学杂志。2020;83(2):509-510。17. van Damme C、Berlingin E、Saussez S、Accaputo O。急性荨麻疹和发热是 COVID-19 感染的首发表现。欧洲皮肤病学杂志。2020;34(7):e300-e301。18. Galván Casas C、Català A、Carretero Hernández G 等人。 COVID-19 皮肤表现的分类:西班牙一项涉及 375 例病例的快速前瞻性全国性共识研究。Br J Dermatol。2020;183(1):71-77。19. Freeman EE、McMahon DE、Lipoff JB 等人。与 COVID-19 相关的冻疮样皮肤病变:来自 8 个国家的 318 名患者的病例系列。J Am Acad Dermatol。2020;83(2):486-492。20. Young S、Fernandez AP。COVID-19 的皮肤表现。Cleve Clin J Med。2020。doi:10.3949/ccjm.87a.ccc031。提前在线发表。21. Mathur J、Chouhan V、Pangti R、Kumar S、Gupta S。用于识别 COVID-19 皮肤表现的卷积神经网络架构。皮肤病学治疗。2021;34(2):e14902。doi:10.1111/dth.14902 22. Christopher JJ、Nehemiah HK、Arputharaj K、Moses GL。用于诊断荨麻疹的计算机辅助医疗决策系统。MDM 政策实践。2016;1(1):2381468316677752。doi:10.1177/2381468316677752
