这项工作中使用的化学物质是商业购买的。元素分析是通过勒克瑙CDRI的微分析确定的。使用溴化钾托盘,将FTIR光谱记录在BrukerαTFT-IR分光光度计上。使用Varian Carry 5000,UV/VIS/NIR分光光度计记录电子光谱。使用TBAP用TBAP作为支撑电解质,用Epsilon Basi循环电压表确定化合物的电化学性能。使用电气操作的熔点装置对化合物的分解温度进行监测,其加热能力高达360ºC。理论研究,即研究化合物的分子几何参数和振动特性,前沿分子轨道(FMOS)以及分子静电势表面(MEP)(MEPS)使用B3LYP/ LANL2DZ组合进行了密度功能理论(DFT)。使用高斯09软件包进行DFT计算。
目前,尚无统一、标准化且可重复的痤疮严重程度分级系统。痤疮通常按类型(粉刺性/丘疹性、脓疱性/结节性囊性)和/或严重程度(轻度/中度/中度严重/极重度)进行分类。皮肤病变可描述为炎症性或非炎症性(Dellavalle & Howland,2017 年)。痤疮分级可能涉及病变计数和摄影方法。已经开发了许多定性和定量工具。然而,对于确切的分级标准缺乏共识,这妨碍了评估治疗和结果的随机对照临床试验的开展和比较(Moradi Tuchayi 等人,2015 年)。
原子层沉积 (ALD) 是微电子行业广泛采用的先进气相薄膜制造技术,用于晶体管和显示器等应用。25 在 ALD 中,不同的气态/汽化金属和共反应物前体被顺序脉冲输入反应腔,每个前体脉冲之后都进行惰性气体吹扫步骤,以在发生所需的表面反应后去除多余的前体分子。由于这些化学表面反应的自限性,ALD 可提供无针孔、高度均匀且保形的薄膜,并可在原子级厚度控制。用于有机薄膜的 ALD 对应方法也是最近才开发的,这种方法称为分子层沉积 (MLD)。26 MLD 采用纯有机气态/汽化前体。最重要的是,ALD 和 MLD 都是模块化的,这意味着为了沉积高质量的金属有机薄膜,可以结合使用 ALD 和 MLD 前体脉冲。 27,28 这种目前蓬勃发展的混合 ALD/MLD 技术已被用于制造数十种新型金属有机薄膜材料,这些材料表现出的有趣功能特性远远超出了纯无机或有机薄膜所能实现的功能特性。29 例如,ALD/MLD 生长的金属有机薄膜的机械性能通常比 ALD 生长的无机薄膜高出几个数量级,这在柔性电子应用等领域非常重要。30,31
电感耦合等离子体 (ICP) 光谱法 22 总结 22 理论 22 检测限/范围 23 准确度/精密度 23 方法比较 23 砷形态分析 25 概述 27 样品和标准品的处理 27 样品 27 标准品 28 蒸发预浓缩 28 选择性氢化物生成 28 总结/理论 28 硼氢化钠还原 29 砷 (m) 的还原 30 砷 (V) 的还原 30 DMAA 和 MMAA 的还原 32 砷的分离 33 连续氢化物生成 33 干扰 33 检测系统 34 SDDC 检测 34 高效液相色谱法 35 离子色谱法 37 柱色谱法 38 气相色谱法 39 选择性液-液萃取40 AA-石墨炉检测 40 中子活化分析检测 41 选择性沉淀 42 比色法 43 钼砷酸盐 43 释放的碘 44 伏安法和极谱法 45 方法比较 46
铂族金属钌基疗法因其可接受的生物学和丰富的抗癌特性而备受关注。[1] 顺铂、奥沙利铂和卡铂等铂基抗癌药物对多种癌细胞均有疗效,但缺乏选择性、溶解性和其他副作用,促使研究人员开发不同于传统药物的抗癌剂。[2] 因此,有多个关于钌配合物的报道,这些配合物已被用于可能的“钌疗法”框架内的抗癌研究。[3] NAMI-A、[4] KP1019、[5] 及其钠盐类似物 (N)KP-1339、[6] 是已进入人体和临床试验阶段的钌配合物。[7] RAPTA 是
1转化微生物学小组,阿斯图里亚公国卫生研究研究所(ISPA),33011 Oviedo,西班牙2,西班牙2临床微生物学系,阿斯图里亚斯中央医院(HUCA),33011 Oviedo,西班牙Oviedo,西班牙Oviedo,西班牙33011年,西班牙3级奶牛研究所,Spurias of Asturias(ipla),西班牙国家研究所(IPLA),西班牙国家,33333333333333333333333333333333333333333333333333333 33 33 33 333 33011,ipla)。 Microhealth Group,Asturias公国卫生研究所(ISPA),33011 OVIEDO,西班牙5 5号,阿斯特里亚斯中央大学医院血液学系(HUCA)血液学系(HUCA),Asturias卫生研究所(ISPA)(ISPA)(ISPA)的研究所,Oncología(ISPA),Oncología(IUOPA),SPAIRINALION,33011 OVIIDO,33011 OVIIDO,33011 OVIIDO,oviedo, Oviedo,33006 Oviedo,西班牙7研究与创新,人工智能和统计部,Pragmatech AI解决方案,33001 Oviedo,西班牙8Biomédica在红色呼吸疾病中,Madrid,28029 Madrid,28029,Spain *通信: div>
1 1 50019佛罗伦萨。意大利3佛罗伦萨大学制药和营养分离的神经法兰部,通过U.Schiff 6,Sesto Fiorentino,50019,意大利佛罗伦萨市50019 4 4罗马大学萨皮恩萨大学实验医学系,萨皮恩萨大学,萨皮恩萨大学,萨皮恩萨大学,萨迪纳·拉吉纳·埃琳娜324 324 324,00161罗马,00161罗马,00161,00161 ITALY 5 Italico", 00135 Rome, Italy 6 Department of Sensory Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy 7 Department of Motor Sciences and Wellness, University of Naples "Partenope", 80133 Naples, Italy 8 D3 Pharmachemistry, Italian Institute of Technology, via Morego 30, 16163 Genoa,意大利 * Corpsondence:antonella.meterio@uniroma1.it(A.M。); paola.gratteri@unifin。它(P.G. );电话。 : +39-0649913966(A.M.); +39-0554573701(P.G.)1 50019佛罗伦萨。意大利3佛罗伦萨大学制药和营养分离的神经法兰部,通过U.Schiff 6,Sesto Fiorentino,50019,意大利佛罗伦萨市50019 4 4罗马大学萨皮恩萨大学实验医学系,萨皮恩萨大学,萨皮恩萨大学,萨皮恩萨大学,萨迪纳·拉吉纳·埃琳娜324 324 324,00161罗马,00161罗马,00161,00161 ITALY 5 Italico", 00135 Rome, Italy 6 Department of Sensory Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy 7 Department of Motor Sciences and Wellness, University of Naples "Partenope", 80133 Naples, Italy 8 D3 Pharmachemistry, Italian Institute of Technology, via Morego 30, 16163 Genoa,意大利 * Corpsondence:antonella.meterio@uniroma1.it(A.M。); paola.gratteri@unifin。它(P.G. );电话。 : +39-0649913966(A.M.); +39-0554573701(P.G.)1 50019佛罗伦萨。意大利3佛罗伦萨大学制药和营养分离的神经法兰部,通过U.Schiff 6,Sesto Fiorentino,50019,意大利佛罗伦萨市50019 4 4罗马大学萨皮恩萨大学实验医学系,萨皮恩萨大学,萨皮恩萨大学,萨皮恩萨大学,萨迪纳·拉吉纳·埃琳娜324 324 324,00161罗马,00161罗马,00161,00161 ITALY 5 Italico", 00135 Rome, Italy 6 Department of Sensory Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy 7 Department of Motor Sciences and Wellness, University of Naples "Partenope", 80133 Naples, Italy 8 D3 Pharmachemistry, Italian Institute of Technology, via Morego 30, 16163 Genoa,意大利 * Corpsondence:antonella.meterio@uniroma1.it(A.M。); paola.gratteri@unifin。它(P.G. );电话。 : +39-0649913966(A.M.); +39-0554573701(P.G.));电话。: +39-0649913966(A.M.); +39-0554573701(P.G.)
摘要:这项研究旨在研究抗碳青霉培养素的生物膜产生能力鲍曼尼(Baumannii)(CRAB)(CRAB),70%乙醇和0.5%钠次氯酸钠的生物膜膜片潜力在生物膜产生和细菌基因型之间。测试了总共111个螃蟹分离株的抗菌易感性,生物膜形成,编码碳青霉酶的基因的存在以及与生物FILM相关的毒力因子。还测试了消毒剂和SENP对CRAB分离株的抗纤维膜作用。绝大多数测试的分离株是生物膜生产者(91.9%)。在57%,70%和76%的螃蟹分离株中发现了BAP,OMPA和CSUE基因,与非生物产生的生产者(25%)相比,在生物纤维生产国(78.6%)中,CSUE在生物纤维生产国(78.6%)中的普遍性更高。测试的消毒剂比对弱生产者的抗纤维膜对中度和强生物膜产生的影响更好(p <0.01)。SENP对所有测试的浮游症状(MIC范围:0.00015至> 1.25 mg/ml)和生物纤维膜包含的蟹表现出抑制作用,最低生物膜抑制浓度低于0.15 mg/ml,生物纤维抑制浓度低于0.15 mg/ml。总而言之,SENP可以用作有前途的治疗和医疗设备涂料剂,因此是预防生物膜相关感染的替代方法。
摘要:氨基甲酸乙酯(EC)是酒精饮料中乙醇与尿素在发酵和储存过程中发生反应而产生的一种天然物质。少量饮用EC会引起头晕和呕吐,过量饮用则会导致肾癌。因此,减少酒精饮料中EC的形成对食品安全和人类健康具有重要意义。降低酒精饮料中EC含量的策略之一是开发一种新的酵母发酵剂菌株,以减少发酵过程中EC的形成。在本研究中,我们从Nuruk(韩国传统的以谷物为基础的野生酵母和霉菌接种物)中分离出一种多倍体野生型酵母酿酒酵母菌株,并通过基因组工程开发了一种发酵剂来降低酒精饮料中的EC含量。我们利用基于CRISPR/Cas9的基因组编辑工具删除了酿酒酵母中参与EC形成的目标基因的多个拷贝。首先,在酿酒酵母的基因组中完全删除编码负责尿素形成的精氨酸酶的CAR1基因。此外,在酿酒酵母中删除编码控制与尿素吸收和降解相关的几个基因(DUR1、2和DUR3)表达水平的转录因子的GZF3基因,以进一步减少EC的形成。通过RT-qPCR验证基因缺失的效果,以确认与EC相关的基因转录水平的变化。与野生型菌株相比,携带CAR1和GZF3基因双缺失的酿酒酵母菌株成功降低了发酵培养基中的EC含量,而酒精含量和发酵曲线没有显著变化。最后,我们使用 S. cerevisiae dCAR1&GZF3 双缺失菌株酿造了韩国传统米酒 Makgeolli,与野生型菌株相比,Makgeolli 中的 EC 含量显著降低,最高可达 41.6%。这项研究成功地展示了通过 CRISPR/Cas9 基因组编辑野生酵母来开发一种发酵剂以减少酒精饮料中的 EC 形成。
摘要。– 目的:在其他类型的癌性病变中,肺癌是导致死亡的主要原因之一。葫芦巴碱是一种植物碱,是咖啡中的重要成分,并且已显示出对多种疾病的健康益处。本研究旨在探讨葫芦巴碱在肺癌中的潜在治疗作用。材料与方法:75 只 BALB/C 小鼠被分成 5 组,并按以下方式治疗 150 天:(1) 正常对照组;(2) 最后 30 天每天仅使用葫芦巴碱 (50 mg/kg/ PO);(3) 第 1 天和第 60 天使用乌拉坦 (1.5 g/kg Bw/ip);(4) 最后 30 天使用乌拉坦和卡铂 (15 mg/kg ip);(5) 最后 30 天使用乌拉坦和葫芦巴碱。测量肿瘤大小,同时收集血液和肺进行生化、蛋白质印迹分析和组织学检查。