Daniel J. Lichtenwalner1,A*,Sei-hyung Ryu1,B,Brett Hull1,C,Scott Allen1,D和John W. Palmour1,E Aaniel J. Lichtenwalner1,A*,Sei-Hyung Ryu1,B,B,BRETT HULL1,BRETT HULL1,C SCOTT HULL1,C,C,C,C,SCOTT ALLEN1,D. U1,B,Brett Hull1,C,Scott Allen1,D和John W. Palmour1,E Daniel J. Lichtenwalner1,A*,Sei-Hyung Ryu1,B,Brett Hull1,C,Scott Hull1,C,Scott Allen1,d和John W. John W. Palmour1,E Daniel J. Lichtenwalner1,A*,Sei-Hyung Ryu1,B,Brett Hull1,C,Scott Allen1,D和John W. Palmour1,E Daniel J. Lichtenwalner1,A* Sei-Hyung Ryu1,B,Brett Hull1,C,Scott Allen1,d,以及 John W. Palmour1,e Daniel J. Lichtenwalner1,a*,Sei-Hyung Ryu1,b,Brett Hull1,c,Scott Ryu1,b、Brett Hull1,c、Scott Allen1,d 和 John W. Palmour1,e Daniel J. Lichtenwalner1,a*、Sei-Hyung Ryu1,b、Brett Hull1,c、Scott Allen1,d 和 John W. Palmour1,e Daniel J. Lichtenwalner1,a*、Sei-Hyung Ryu1,b、Brett Hull1,c、Scott Allen1,d 和 John W. Palmour1,e Daniel J. Lichtenwalner1,a*、Sei-Hyung Ryu1,b、Brett Hull1,c、Scott Allen1,d 和 John W. Palmour1,e Daniel J. Lichtenwalner1,a*、Sei-Hyung Ryu1,b、Brett Hull1,c、Scott Allen1,d 和 John W. Palmour1,e Daniel J. Lichtenwalner1,A*,Sei-hyung Ryu1,B,Brett Hull1,C,Scott Allen1,D和John W. Palmour1,E Daniel J. Lichtenwalner1,A*,Sei-Hyung Ryu1,B,B,B,Brett Hull1,C,Brett Hull1,C,Scott Hull ,Brett Hull1,C,Scott Allen1,D和John W. Palmour1,E Daniel J. Lichtenwalner1,A*,Sei-Hyung Ryu1,B,Brett Hull1,C,Scott Allen1,D,D,D。 Our1,E Daniel J. Lichtenwalner1,A*,Sei-Hyung Ryu1,B,Brett Hull1,C,Scott Allen1,D和约翰·W·帕尔默1,e
显示I ON / I OFF 〜10 5,明显的现场效应移动性〜250 cm 2 V -1 S -1,子阈值swing < / div < / div < / div < / div < / div < / div < / div < / div < / div
摘要 — 当氧化层变薄,栅极长度变短时,MOSFET 器件中会出现短沟道效应 (SCE)。本研究的目的是寻找一种新的电介质和栅极材料来取代传统的氧化物二氧化硅 (SiO 2 ) 和多晶硅作为栅极材料。本研究的目的是研究使用不同类型的高 k 电介质材料和锗 (Ge) 作为栅极材料的 MOSFET 的性能。使用 Silvaco TCAD 工具制造和模拟 MOSFET 结构。基于电流-电压 (IV) 特性评估 MOSFET 的整体性能。结果表明,用 HfO 2 和 Ge 作为电介质和栅极材料制造的 MOSFET 具有较高的驱动电流,漏电流比传统 MOSFET 降低了 0.55 倍。因此,与 SiO 2 和多晶硅相比,MOSFET 结构中 HfO 2 和 Ge 的组合具有最佳性能,因为它在缩小器件尺寸时产生较小的漏电流和较小的 V th,从而降低 SCE。
这些行为并非直接源自其组成材料,而是源自其亚波长结构[1,2],以及最近的主动控制[3]。在光学领域,超材料在电磁学和光子学中提供了突破性的应用[4-6],例如以亚波长分辨率聚焦和成像[7]和负折射[8],因此在过去的几十年里引起了人们的极大兴趣。这些亚波长结构能够直接调整光的性质,包括振幅、相位和偏振。由于其支持表面等离子体极化子的能力[9],银和金等贵金属一直是可见光超材料构造块的传统材料选择,而等离子体太赫兹 (THz) 纳米天线通常基于重掺杂的半导体。 [10] 然而,这些超材料通常依赖于其组成块的谐振行为,并且在光频率下存在高电阻损耗,这限制了此类超材料和相关设备的功能在尖锐的频带范围内。更一般地说,基于谐振行为的超材料仅在
电子带结构,尤其是导带尾部处的缺陷状态,主导电子传输和在极高的电场下介电材料的电降解。然而,由于在检测到极高的电场的电传导时,即介电的挑战(即预损伤),介电带中的电子带结构几乎没有得到很好的研究。在这项工作中,通过现场预击传导测量方法探测聚合物电介质纤维的电子带结构,并与太空电荷限制 - 电流光谱分析结合使用。根据聚合物电介质中的特定形态学障碍,观察到具有不同陷阱水平的导带处的缺陷状态的指数分布,实验缺陷态也表明,与密度函数理论的状态密度相关。这项工作中所证明的方法桥接了分子结构确定的电子带结构和宏电导行为,并高度改进了对控制电崩溃的材料特性的高度改进,并为指导现有材料的修改以及对高电气纤维应用的新型材料的探索铺平了一种方式。
摘要本文提出了新开发的先进的超薄光敏电介电膜(PDM),其高分辨率,低CTE和低剩余应力,用于下一代高密度重新分布层(RDL),2.5D Interposer,以及高密度的风扇输出包装应用程序。对于高密度RDL,光敏电介质材料需要具有低CTE才能达到高包装可靠性。材料的CTE为30-35ppm /k。在保持低CTE时,我们成功地证明了5UM厚度中3UM的最小微型视野直径。PDM的固化温度为180 0 C x 60分钟。比目前在行业中使用的大多数高级介电材料低。低温固化过程会导致低压力。,我们通过4英寸晶圆的经经测量测量结果计算了固化的PDM中的残余应力。作为PDM材料在固化过程中的另一个好处,可以将PDM固化在空气烤箱中。大多数先进的照片介电材料都需要在N2烤箱中固化,这是由于防止材料氧化的。我们通过使用半添加过程(SAP)和溅射的Ti/Cu种子层展示了2UM线的铜痕迹,并在PDM上间隔。由于由于低温固化而引起的低CTE和低残余应力,它通过了温度周期测试(1,000个周期),其雏菊链结构在结构中具有400个VIA。可以得出结论,新开发的PDM是一种有前途的介电材料,用于2.5D interposers和Fan-Out Wafer级级别的应用程序,用于高度可靠的高密度重新分布层(RDL)。
有机场效应晶体管 (OFET) 是有机电子电路的核心单元之一,OFET 的性能在很大程度上取决于其介电层的特性。有机聚合物,如聚乙烯醇 (PVA),由于其固有的柔韧性和与其他有机成分的天然兼容性,已成为 OFET 备受关注的介电材料。然而,诸如滞后、高亚阈值摆幅和低有效载流子迁移率等不尽人意的问题仍然大大限制了聚合物介电 OFET 在高速、低压柔性有机电路中的实际应用。这项工作开发了一种使用超临界 CO 2 流体 (SCCO 2 ) 处理 PVA 介电体的新方法,以获得性能卓越的聚合物介电 OFET。 SCCO 2 处理可以完全消除 OFET 传输特性中的滞后现象,同时还可以显著降低器件亚阈值斜率至 0.25 V/dec,并将饱和区载流子迁移率提高至 30.2 cm 2 V − 1 s − 1 ,这两个数字对于柔性聚合物电介质 OFET 来说都是非常可观的。进一步证明,与有机发光二极管 (OLED) 耦合后,SCCO 2 处理的 OFET 能够在快速开关速度下运行良好,这表明通过这种 SCCO 2 方法可以实现聚合物电介质 OFET 的优异开关行为。考虑到 OFET 的广泛和重要应用,我们预见这种 SCCO 2 技术将在有机电子领域具有非常广泛的应用,尤其是对于高刷新率和低压柔性显示设备。
晶格共振是由周期性纳米结构阵列支持的集体模式。它们源自阵列各个成分的局部模式之间的相干相互作用,对于由金属纳米结构制成的系统,这通常对应于电偶极等离子体。不幸的是,基本的对称性原因使得二维 (2D) 电偶极子排列无法吸收超过一半的入射功率,从而对传统晶格共振的性能造成了很大的限制。这项工作引入了一种克服这一限制的创新解决方案,该解决方案基于使用由包含一个金属和一个介电纳米结构的单元格组成的阵列。使用严格的耦合偶极子模型,可以证明该系统可以支持两个独立的晶格共振,分别与纳米结构的电偶极子和磁偶极子模式相关。通过调整阵列的几何特性,这两个晶格共振可以在光谱域中精确对齐,从而导致入射功率的全部吸收。这项工作的结果为合理设计能够产生完美吸收的晶格共振阵列提供了清晰而又普遍的指导,从而充分利用这些模式的潜力,用于需要有效吸收光的应用。
许多新兴应用中的主流介电储能技术,如可再生能源、电气化交通和先进推进系统,通常需要在恶劣的温度条件下运行。然而,在当前的聚合物介电材料和应用中,优异的电容性能和热稳定性往往是互相排斥的。在这里,我们报告了一种定制结构单元以设计高温聚合物电介质的策略。预测了由不同结构单元组合而成的聚酰亚胺衍生聚合物库,并合成了 12 种代表性聚合物用于直接实验研究。这项研究为实现在高温下具有高能量存储能力的坚固稳定的电介质所必需的决定性结构因素提供了重要的见解。我们还发现,当带隙超过临界点时,高温绝缘性能的边际效用会递减,这与这些聚合物中相邻共轭平面之间的二面角密切相关。通过实验测试优化和预测的结构,观察到在高达 250°C 的温度下能量存储增加。我们讨论了将该策略普遍应用于其他聚合物电介质以进一步提高性能的可能性。