近年来,新能源的广泛使用使得电力设备必须在高电压、大功率、高温等恶劣环境下工作[1,2]。因此,电介质材料作为电力设备必不可少的组成部分,受到了更多的关注。电力设备中使用的固体电介质可分为聚合物电介质和无机电介质。无机电介质具有较高的温度稳定性,但也存在击穿强度(E b )低、柔韧性差的缺点,给大规模制备带来了不可忽视的困难。与无机电介质不同,聚合物电介质具有重量轻、柔韧性好、易于加工等优点[3]。同时,优异的介电性能(高E b 、低介电损耗[tanδ])使其在电力设备中得到广泛的应用。随着电子和电力系统的不断小型化和功率输出的增加,许多领域都要求聚合物电介质在恶劣环境下可靠工作。例如,火箭和航天飞机壳体附近的控制和传感电子设备需要高温电介质材料在250 ∘ C 以上工作。在地下油气勘探中,工作温度超过 200 ∘ C [4]。不幸的是,传统聚合物电介质热稳定性差,严重威胁电力设备的可靠运行,并显著缩短其生命周期。因此,在高温应用中使用二次冷却设备来降低工作温度。然而,考虑到地下勘探和空间站等大型设施所经历的极端温度,二次冷却很难实现。因此,一个更具吸引力的策略是开发能够在高温下长期工作的耐高温聚合物电介质。这种策略可以提高系统可靠性,降低成本,并消除对大型冷却系统的需求以及远程放置电子设备所需的接线和互连 [5,6]。
摘要:栅极绝缘体是决定石墨烯场效应晶体管 (GFET) 性能的最重要因素之一。栅极电压对导电通道的良好静电控制需要较薄的栅极氧化物。由于缺乏悬挂键,通过原子层沉积 (ALD) 工艺生长的栅极介电膜通常需要种子层。种子层可实现介电膜的高质量沉积,但可能导致最终介电膜厚度大幅增加。针对该问题,本文提出了一种改进工艺,在原子层沉积之前使用蚀刻溶液去除自氧化的 Al 2 O 3 种子层,Al 2 O 3 残留物将提供石墨烯表面的成核位点。受益于电介质膜厚度的减小,与使用标准 Al 蒸发种子层方法的 GFET 相比,使用此方法作为顶栅电介质膜沉积工艺的 GFET 的跨导平均增加了 44.7%。
随着移动设备的快速发展,电能存储在固定电网、智能机器人、混合电动汽车等领域受到广泛关注,这些应用场合要求储能系统与元件具有电能充放电速度快、可靠性高、重量轻等特点。1 – 6 柔性电容器因具有柔性、密度低、易集成等特点,在电子电气领域得到广泛的应用。双向拉伸聚丙烯(BOPP)被广泛应用于商业化的柔性储能装置中。然而,由于BOPP的介电常数低(1 kHz时为2),其储能性能(Ue)仅限于1 – 2 J cm 3 @ 660 kV mm 1,这对开发电子设备中的储能元件非常不利。7,8 介电电容器储能是当今最常用的储能材料之一。
实现 AS-ALD 的一种常见方法是使用自组装单分子层 (SAM) 作为抑制剂,以优先阻止一种表面材料上的 ALD 而不是另一种。 [7–14] SAM 是一种有机分子,由头部基团(也称为锚定基团)、主链(通过范德华相互作用参与自组装过程)和尾部官能团组成,其中尾部官能团会影响 SAM 形成后的最终表面特性。通过选择仅与特定表面反应的 SAM 分子头部基团,可以实现选择性 SAM 形成。例如,已证实烷硫醇和烷基膦酸可在金属基材上形成 SAM 结构,但不会在 SiO 2 上形成。 [15–21] 通过使用这两种 SAM 分子作为金属表面 ALD 抑制剂,已有多次成功演示在金属/电介质图案的电介质区域上选择性沉积电介质膜(电介质-电介质,或 DoD)和金属膜(金属-电介质,或 MoD)。[7–12,22,23]
相比之下,IRRAS在氧化物和二元组中的应用通常不那么发达了。虽然广泛可用的氧化物粉末吸附剂的实验性IR数据,但这些材料的宏观单晶的10,11 IRRAS数据受到限制。10–13此限制源于电介质的特定光学特性,并阻碍了直到最近氧化物上IRRAS数据的实验记录。金属和半导体之间的关键区别是通过金属电子对电场进行筛选,影响总红外反射率,并引起所谓的表面选择规则,管理金属表面上的IRRAS。2,14该规则规定,对于金属,通常仅具有过渡偶极矩的成分的振动
自 1983 年在法国图卢兹成立以来,国际固体电介质传导与击穿会议 (ICSD) 已成功举办了 11 届会议,如今,该会议向液体和气体电介质敞开了大门,并于 2016 年在蒙彼利埃举办了国际电介质会议 (ICD)。ICD 是一个跨学科论坛,为来自工业界、学术界和研究中心的研究人员提供了一个独特的机会,让他们齐聚一堂,回顾他们的研究活动。它涵盖了电介质材料和电介质现象领域的研究,以及设备在工作应力下电绝缘的行为和特性。会议涵盖了功率器件以及涉及绝缘和电介质的所有系统的主题。第五届 ICD 将于 2024 年 6 月 30 日星期日至 2024 年 7 月 4 日星期四在法国图卢兹举行,距 2004 年 ICSD 会议仅过去 20 年。图卢兹是欧洲航空航天业的主要城市,空中客车公司总部就设于此。2023 年,26 家航空公司和 69 个国际目的地均可轻松抵达图卢兹。我们热忱邀请您预留日期,参加第五届 ICD 并为其做出贡献。辅导课将在会议第一天举行。欢迎提交固体、液体和气体电介质所有领域的论文。
6.1在电路QED测量设置中结合腔外耗散和腔内衰减。。。。。。。。。。。。。。。。。。。153
近年来,聚合物纳米复合电介质由于结合了纳米粒子的高介电常数和聚合物基质的高电击穿强度而提高了介电性能,在电能存储应用中引起了越来越多的关注。本文回顾了电介质储能建模和基于模型的聚合物纳米复合电介质合理设计的最新进展。还讨论了聚合物纳米复合电介质的合成策略和介电性能行为。特别是,本综述重点介绍了显着提高复合电介质能量密度的关键策略和分析模型,包括界面设计、微结构工程和新型高介电填料。通过将机器学习技术与分析模型结合使用,出现了新的设计。为了展示聚合物纳米复合电介质的实际应用,总结了一些最近在电动汽车、脉冲武器系统和电力电子中大规模生产储能装置的实例。最后,讨论了聚合物纳米复合电介质的挑战和新的应用机会。
关键词:非光定义聚酰亚胺、固化、C&D Track、CascadeTek 烤箱、互连和 GaAs。摘要 化合物半导体行业使用多种材料来制造用于金属互连的层间电介质薄膜。这些材料包括 BCB、聚酰亚胺和硅电介质。在本文中,我们讨论了在 BAE 系统微电子中心 (MEC) 制造工厂的新加工设备上进行的聚酰亚胺薄膜工艺鉴定。这项工作包括对用于聚酰亚胺涂层的新涂层轨道和用于固化聚酰亚胺涂层薄膜的新固化烤箱的鉴定。引言聚酰亚胺薄膜具有低介电常数、高模量和相对较高的热稳定性、化学稳定性和机械稳定性 1, 2 。这些特性使其成为众多半导体和微电子处理应用的有吸引力的候选者。这些应用包括使用聚酰亚胺薄膜作为倒装芯片封装中的钝化层、印刷电路板的基板、多芯片模块沉积电介质封装中的基板、多层金属互连中的电介质夹层等。3 本文讨论了将聚酰亚胺薄膜用于金属互连,因为其介电常数低,可以降低寄生电容。金属互连将集成电路 (IC) 的各个部分电连接起来。互连结构对于现代 IC 制造至关重要。图 1 显示了典型互连结构的横截面。互连由交替的金属层和电介质层制成。这些层经过图案化,形成连接电路 1、2、4 的各个组件的电通路。
在本文中,我们研究了在漏极侧加入 HfO 2 作为电介质并在源极侧加入硅堆栈对双栅极隧道 FET(DG-TFET)电气性能的影响。为此,我们将传统 TFET 结构与其他四种结构进行了比较,这四种结构的栅极电介质材料要么是同质的,要么是异质的,而漏极侧的绝缘体要么是 SiO 2 要么是 HfO 2 。此外,还提出了一种具有硅源堆栈的结构,并将器件的性能系数与其他对应结构进行了比较。我们的模拟结果表明,漏极侧存在 HfO 2 绝缘体会降低双极传导,而异质栅极电介质则会增强驱动电流和跨导。但是,与传统 TFET 相比,HfO 2 会略微降低源极-栅极和漏极-栅极电容。此外,在所研究的 50 nm 沟道长度 TFET 中,硅源极堆栈与异质栅极电介质和漏极侧的 HfO 2 绝缘体的结合,可实现更高的 I ON /I OFF 比、更低的亚阈值斜率 (S) 和更低的双极传导。