摘要。触摸后的康复装置是必不可少的,因为中风攻击可能导致人体的一部分或一半。外骨骼可能是中风后患者康复的重要装置。几项研究提出了用于康复目的的外骨骼设计,以实现人类肢体疾病。这项研究旨在根据肌电或任何其他传感器回顾手部外骨骼设备的最先进。本文有望使用肌电传感器和力传感器同时设计手外骨骼设备。这是通过审查与外骨骼开发有关的几篇文章来实现的,尤其是在传感器系统,数据处理和执行器系统中。结果表明,仍然发现使用Ag电极一次性AG(AGCL)检测手指在手上的运动,因为该传感器可以减少伪影噪声。在几项研究中也发现了肌臂的使用,因为它具有无线特性,因此易于使用。在处理器方面,Arduino微控制器比其他微控制器更广泛地使用。为了激活手部外骨骼,伺服电动机被更广泛地用于启动手指关节,这比其他执行器更精确。在进一步的发展中,外骨骼系统和信息系统之间的整合将是一个预期的挑战。希望,这种外骨骼的发展可以作为康复装置应用于故障或瘫痪的患者。
摘要:灵活的触觉传感器由于其生物适应性和快速信号感知而显示出对人工智能应用的希望。Triboeelectric传感器可实现主动动态触觉传感,同时整合静态压力传感和实时多通道信号传输是进一步开发的关键。在这里,我们提出了一个集成结构,该结构结合了一个用于静态时空映射的电容传感器和一个用于动态触觉识别的摩擦电传感器。4×4像素的液态金属柔性双模式互动耦合触觉传感器(TCTS)阵列可实现7毫米的空间分辨率,表现为0.8 PA的压力检测极限,快速响应6 ms。此外,使用基于MXENE的突触晶体管使用的神经形态计算在90个时期内通过TCTS阵列收集的动态互动信号在90个时期内实现了100%的识别精度,并实现了来自TCTS阵列的动态互动信号,以及从多键盘触觉数据中的交叉空间信息通信中实现了多型触觉数据的交流。结果阐明了在人界面和高级机器人技术中双模式触觉技术的相当大的应用可能性。关键字:互联网耦合,触觉传感器阵列,神经形态计算,人类 - 机器接口,混合现实
可穿戴电子产品是一种新兴技术,它实现了日常电子设备的灵活性、可穿戴性和舒适性,可广泛应用于电子皮肤[1–4]、自供电传感器[5]和健康监测[6,7]等各种应用。尽管在开发多功能可穿戴设备方面已经取得了长足的进步,但电源仍然是一个难以解决的挑战。电池和超级电容器尽管具有良好的稳定性和效率,但仍然受到寿命、刚性、体积、封装和安全性等问题的限制。[8,9]作为未来自供电技术的潜在候选者,摩擦电和压电纳米发电机(TENG 和 PENG)能够从环境(风、雨和潮汐能)和人体运动(行走、跑步、拍手和弯肘)中获取机械能,并将其转化为电能为可穿戴设备供电。 [10–15] TENG通过摩擦起电和静电感应的耦合效应产生电能,而PENG则利用压电材料变形产生的偶极矩将机械能转化为电能。两者都是很有前途的能源技术,可以满足绿色能源和可持续发展的苛刻要求。然而,这两种技术也各有优缺点。例如,由于压电材料封装方便、结构灵活,PENG通常具有更好的电稳定性和操作灵活性,但其电输出相对较低。相反,TENG通常具有更高的电输出,但是它们的工作机制,例如垂直接触分离和横向滑动模式,需要两种不同材料的相对位移,这限制了设备的配置和应用场景。因此,一种混合型TENG和PENG能量收集器(TPENG)结合它们的优点,以获得更高的功率输出并适应不同的应用,是非常可取的。
纤维因其优异的拉伸性、透气性和高孔隙率而在诸多领域具有广泛的应用前景。人们已经开发出许多方法来使用各种材料来生产合成纤维,其中,静电纺丝是一种广泛使用且有效的生产微纳米级纤维(纤维直径范围从 2 纳米到几微米)的方法[5]。除静电纺丝外,大多数其他传统的纤维生产方法,如湿纺和干纺、拖曳纺丝、凝胶纺丝和三维 (3D) 打印,都仅依靠机械拉伸或剪切应力来拉伸和变细纤维射流;因此,它们通常很难在不导致纤维断裂的情况下生产出纤维直径小于 10 毫米的超薄纤维[6]。静电纺丝利用强静电力将聚合物溶液或熔体拉伸成细射流,最终形成微/纳米纤维沉积。这种现象最早在一个多世纪前被发现和描述 [ 7 ],但直到 20 世纪初,“静电纺丝”一词才正式提出 [ 8 ]。从那时起,关于这种用途广泛且简单的纤维生产技术的研究一直在显着增长 [ 9 ]。随着材料科学和纳米技术的最新发展,新材料已与静电纺丝技术相结合,例如导电材料、能量产生材料以及生物相容性和生物活性材料。利用这些新材料功能化的电纺微/纳米纤维不仅保留了超薄纤维的物理优点,例如高长宽比、柔韧性、方向性和高孔隙率,而且还开辟了新颖的纤维和纺织设备配置和应用。例如,压电聚合物的使用使一系列本质上灵活和透明的能量收集器和自供电传感器成为可能[10,11]。用聚合物和金属或陶瓷制成的复合材料纤维在新型传感和光电设备中显示出良好的应用潜力[12,13]。同时,这些新兴应用要求对电纺纤维的形貌和图案进行更精确、更方便和定制化的控制。因此,人们努力改进和调整静电纺丝装置和工作条件,并将纤维纺丝与其他先进加工技术(如 3D 打印和微流体)相结合。本章旨在全面描述静电纺丝的最新创新和技术进步。为了让不熟悉静电纺丝的读者有效地阅读本章,我们在开头简要介绍了静电纺丝的物理原理和基本装置设计,然后讨论了
今年的比赛共吸引了来自九个国家实验室的十六支队伍参赛,其中包括四支来自桑迪亚国家的队伍。获胜队伍包括首席研究员玛拉·辛德霍尔茨、企业管理专家温迪·鲁和新墨西哥大学的行业导师罗布·德尔坎波。玛拉说:“能够深入研究并了解问题空间和我们的传感器需要在何种环境条件下工作,有助于我们构建即将对传感器进行的相关环境测试。”该传感器被昵称为 nDETECT,代表能源 I-Corps 计划,可供军方用于监测硝化纤维素和硝化甘油基推进剂的降解,陆军使用这些推进剂作为能量材料,为其弹药(如火箭发动机)提供推进力。“众所周知,这种推进剂会随着时间的推移而降解,尤其是在极端环境条件下,并会开始排放氮氧化物。 “我们的传感器将向军方发出推进剂或武器正在降解的信号,”马拉说。传感器将安装在武器附近。目前用于氮氧化物检测的商业化方案可能需要更高的温度来收集测量数据或在室温下操作,但很容易被污染。桑迪亚开发的传感器由一个交叉电极和一个纳米多孔吸附层组成。纳米多孔材料可以调节以选择性地吸附气体,电响应与气体浓度直接相关。“目前的化学传感器技术价格昂贵,寿命短,可能需要大量维护,”马拉说。“我们的化学选择性纳米多孔电传感器具有成本效益和低功耗。它们的功耗仅为目前化学传感器的百万分之一,并且几乎不需要维护。”马拉说,传感器的数据将更好地为有关武器的安全决策提供信息,并有助于识别排气产品的演变和吸收趋势,从而提高对剩余使用寿命和降解性能的估计。桑迪亚团队包括桑迪亚联合首席研究员蒂娜·尼诺夫和利奥·斯莫尔,他们计划继续与堪萨斯城国家安全园区的合作伙伴一起开发未来原型,以推进该技术的发展。他们计划生产一个原型传感器,并继续与有兴趣使用 Energy I-Corps 的资金获得该技术许可的企业进行讨论。马拉和温迪表示,除了政府和军事合作伙伴的兴趣之外,他们预计私营部门也可能会对这种传感器感兴趣。例如,汽车、煤炭、空气质量和环境监测行业也需要传感器来有效(最好是高效)地检测气体。 走向商业化
2 HOD公共卫生部,沙洛姆卫生研究所和盟军科学研究所,印度Shuats,摘要:假肢,旨在取代或增强失踪或受损身体部位的人工设备,在增强个人生活质量方面发挥了关键作用。多年来,假肢技术的进步导致了功能,舒适性和美学的改善。这些创新不仅恢复了流动性,而且还严重影响了全球数百万人的整体福祉和生活质量。理由:关于使用假肢来改善生活质量的文章提供了对这些设备对个人产生的积极影响的全面概述。它深入研究了假肢如何恢复遭受肢体损失或损害的人的功能,独立性和流动性。这篇文章强调了心理,社会和身体上的好处,展示了这些设备不仅有助于日常活动,而且还对情感良好和社会融合产生了重大贡献。总的来说,这是一种宝贵的资源,强调了假肢在改善许多人生活中发挥的变革性作用。结果:本文强调了假体对增强生活质量的变革性影响。它讨论了技术进步,个性化解决方案以及对个人的情感利益。总体而言,它强调了假体在改善流动性,恢复功能和促进肢体损失或残疾人的独立性方面的深刻积极影响。1。材料和方法:本文是在收集的,需要使用PubMed,Indian J Plast Surg,JSTOR,Science Direct,Google Scholar,NCBI和学术期刊等数据库进行系统文献搜索。It also Included studies examined the impact of prosthetic devices on quality of life in individuals with limb loss or impairment and it also include” Technology for monitoring everyday prosthesis use (Chadwell 2020) ”, “Implementation of 3D printing technology in the field of prosthetics: Past, present and future” (Mareno 2019), ” Technological advances in prosthesis Design and rehabilitation following upper extremity loss” (Bates 2020), ” Acost -有效的假肢:设计与发展“(Hogue 2022)”,下肢的假肢康复”(O'Keeffe&Rout 2019)。目的:假肢在增强日常功能和恢复个人独立性中的作用。关键字:假肢的影响,恢复感觉,心理反应,恢复日常生活,假肢的未来。引言世界卫生组织提供了需要假肢的35至4000万人的全球估计[1](Chadwell等,2020年),并且最近的技术和外科进步已经开始塑造假肢设计以及像肌电传感器那样佩戴的人的生活(图:1),Osteeelectectration和Targetsectebrentigration and Targetsectementementementementementementementementementementementementementementementementementementementementementementementementementementementemplementement suscemcle roinnervation。(图:2)[2-5](Bates等,2020)。