可充电金属阳极电池是有希望的锂离子电池开发。然而,金属阳极与电解质的高反应性导致形成固体 - 电解质相间(SEI)。电解质设计是控制金属阳极电池中SEI组成的关键手柄,但是我们对电解质(特别是阳离子的第一个协调球)的理解是有限的。在本文中,对离子溶剂化和络合技术的研究将其带入电池电解质的背景下。在一组偏光溶剂中,总结了文献中的相关数据,并补充了溶液(δsol H)的焓(δsol H)和转移(δTrh)测量的焓(δTrh)测量。通过考虑溶剂和阴离子特性,尤其是溶剂捐赠和阴离子的大小,观察到的趋势是合理化的。使用一组示例电解质来实现LI +配位球,等温滴定量热法(ITC)和电位滴定(PT),以探测Li +协调复杂的较弱的溶剂的热力学演化,该溶剂是由弱溶剂的较弱的溶剂所取代的,该溶剂是由强度溶剂替代的。拉曼光谱法用于确认溶剂位移是按预期发生的,并且研究了阴离子对ITC测量的影响。开发了一个统计结合模型,该模型符合实验滴定数据,以提取Gibbs自由能(ΔG),焓(ΔH)和熵(ΔS)的平均变化。使用此方法对EC的优先溶剂化趋势进行了量化的EC:DMC和EC:PC电解质,并与其他工人观察到的偏好进行了比较。本论文为将来的有关更复杂的电池电解质配位环境的热力学研究及其与SEI组成的联系提供了一个框架。
摘要这项研究的目的是估算Kaptai国家公园中的树木生物多样性。在Rangamati Hill Tracts区的Rangamati South Forest Division的管辖下,Kaptai国家公园的总面积约为4,564公顷(11,273.08英亩)。该研究仅通过对Kaptai国家公园的树种组成进行广泛的调查进行。在调查过程中,从公园记录了29个家庭的65种树种。在植物家族中,薄膜科具有最多的物种(7),其次是Meliaceae(6),Ancardiaceae,Ancardiaceae(5),Moraceae,Moraceae(4),Verbenaceae(4),Combretaceae(4),Myrtaceae(4),Myrtaceae(4),Dipterocarocarpaceae,Fabaceae(3),2(3),Rubiace(3)(3),Rubiace(3),Rubiace(3),Rubiace(3),Rubiace(3),Rubiace(3),Rubiace(3),Rubiace(3),3) (2),凯撒尼亚科(2),dilleniaceae(2)和bignoniaceae(2)。有15个家庭包含单个物种。属于含有含羞草家族的树种在物种数量及其种群方面受到了主导。本研究的发现将在这个退化的森林生态系统以及Kaptai国家公园的保护,保护和可持续管理中贡献。
光学透明神经微电极有助于同时从大脑表面进行电生理记录以及神经活动的光学成像和刺激。剩下的挑战是将电极尺寸缩小到单细胞大小并增加密度,以高空间分辨率记录大面积的神经活动,从而捕捉非线性神经动力学。在这里,我们开发了透明石墨烯微电极,它具有超小开口和大而透明的记录区域,视野中没有任何金延伸,高密度微电极阵列高达 256 个通道。我们使用铂纳米粒子来克服石墨烯的量子电容极限,并将微电极直径缩小到 20 μm。引入了层间掺杂的双层石墨烯以防止开路故障。我们进行了多模态实验,将微电极阵列的皮质电位记录与小鼠视觉皮层的双光子钙成像相结合。我们的结果表明,视觉诱发反应在空间上是局部的,适用于高
摘要:由于复杂的自发脑活动纠缠在一起,描述脑电图 (EEG) 中大脑对输入的动态响应模式并非易事。在这种情况下,大脑的反应可以定义为 (1) 输入后产生的额外神经活动成分或 (2) 输入引起的持续自发活动的变化。此外,反应可以体现在多种特征中。三个常见的特征示例是 (1) 瞬态时间波形,(2) 时频表示,和 (3) 相位动态。最广泛使用的平均事件相关电位 (ERP) 方法捕捉到了第一个特征,而后两者和其他更复杂的特征正受到越来越多的关注。但是,目前还没有太多的研究对如何在神经认知研究中有效利用多方面特征提供系统的说明和指导。基于一个有 200 名参与者的视觉异常 ERP 数据集,这项工作展示了上述特征的信息如何相互补充,以及如何基于典型的基于神经网络的机器学习方法将它们整合在一起,以便在基础和应用认知研究中更好地利用神经动态信息。
监测纯净水中溶解的臭氧的含量通常是必须的,以确保适当的消毒和消毒水平。然而,由于比色测定需要费力的分析,因此量化构成挑战,而用于电化学过程分析的市售仪器却很昂贵,并且通常缺乏小型化和酌情安装的可能性。在这项研究中,提出了电位离子聚合物金属复合材料(IPMC)传感器,用于确定超纯水(UPW)系统中溶解的臭氧。通过浸渍还原方法处理市售的聚合物电解质膜以获得纳米结构的铂层。通过应用25种不同的合成条件,可获得2.2至12.6μm的层厚度。支持射线照相分析表明,浸渍溶液的铂浓度对获得的金属载荷具有最高的影响。传感器响应行为是通过langmuir pseudo-ishotherM模型来解释的,并允许溶解的臭氧定量以痕量痕迹小于10μgl-l-1。其他统计评估表明,可以高精度和显着性预测预期的PT加载和放射线降低水平(R 2
dz2 方向的键与 d xy 平面上的键结合,从而显著减轻 JT 畸变并抑制放电至 2.0 V 时的相变。按照这种策略,制备的尖晶石基正极实现了约 290 mA hg -1 的高可逆容量和高达 957 W h kg -1 的能量密度,并且循环稳定性得到改善。这项工作为传统尖晶石正极以低成本和可持续的方式应用于高能量密度 LIBs 找到了新的机会。关键词:锂离子电池;尖晶石基正极;局部结构连接;限制 Jahn-Teller 畸变;高能量密度。1. 简介为了应对电动汽车 (EV) 和电网储能系统 (PGESS) 对锂离子电池 (LIBs) 日益增长的需求,关键挑战之一是设计低成本、高能量密度的正极材料。 [1-3] 与现有的钴基和镍基层状正极材料(如 LiCoO 2 和 LiNi 1-xy Co x Mn y O 2(0 ≤ x+y ≤ 0.5))相比,锰基尖晶石氧化物 LiMn 2 O 4 因成本低、工作电压可接受而引起了广泛关注。[4-6] LiMn 2 O 4 已广泛应用于便携式移动电源,但由于能量密度低(<500 W h kg -1 ),未在电动汽车和 PGESS 中使用。用 Ni 部分替代 Mn,尖晶石 LiMn 2-x Ni x O 4(0< x <1)(LMNO)在接近 4.7 V 处表现出由 Ni 2+ /Ni 4+ 氧化还原对贡献的额外电位平台,将能量密度推高至 580 W h kg -1 。 [7-10] 尽管如此,由于只有尖晶石骨架上 8a 位上的锂离子可以可逆地嵌入/脱出,因此相对较低的容量(<140 mA hg -1 )可以进一步改善。 为了获得更高的容量,一种方法是将电位窗口从 3.0 - 4.8 V 扩展到 2.0 - 4.8 V,因为额外的锂离子可以在 3.0 V 以下嵌入 16c 位。 在此过程中,Mn 4+ 会还原到接近 Mn 3+ 的低价态,从而引起严重的 Jahn-Teller (JT) 畸变和从立方相到四方相(1T)的剧烈相变。 [11,12] 晶格对称性降低导致的晶格体积变化大和各向异性应变大,会在块体中引起裂纹,从而导致电接触丧失和结构降解,最终导致容量衰减。因此,通过抑制JT畸变来抑制立方-四方相变是提高3.0 V以下循环稳定性的关键。长期以来,尖晶石正极的研究主要集中在进一步提高结构稳定性,通过用Li、[6,13]Mg、[14,15]替代Mn或Ni
持续多通道监测生物电信号对于了解整个身体至关重要,有助于在神经研究中建立准确的模型和预测。目前最先进的无线生物电记录技术依赖于辐射电磁 (EM) 场。在这种传输中,由于 EM 场辐射范围很广,因此只能接收到一小部分能量,从而导致系统有损、效率低下。使用身体作为通信介质(类似于“电线”)可以将能量限制在体内,从而比辐射 EM 通信的损耗低几个数量级。在这项工作中,我们引入了动物身体通信 (ABC),它将使用身体作为介质的概念应用于慢性动物生物电记录领域。这项工作首次开发了动物身体通信电路和通道损耗的理论和模型。利用该理论模型,使用现成的组件构建了一个亚英寸 3 的定制传感器节点,该节点能够通过大鼠的身体感应和传输生物电位信号,与传统无线传输相比,其功率明显较低。体内实验分析证明,与传统无线通信方式相比,ABC 成功地通过身体传输了采集的心电图 (EKG) 信号,相关精度 >99%,功耗降低了 50 倍。
证据清楚地描述了相关元素的氧化数量的变化,或者要么丢失/获得的电子数量,用于氧化和减少两个细胞过程,并指的是电解过程的能量需求以及电池电位/标准减少电位的电位/标准减少电位,以符合标准的电力化学过程。
BCI 系统是一种可以提取大脑活动并处理脑信号的设备,使计算机设备能够完成特定目的,例如通信或控制假肢。更常用的系统涉及运动想象(例如,Hétu等人,2013;Kober等人,2019;Su等人,2020;Jin等人,2021;Milanés-Hermosilla等人,2021;Mattioli等人,2022)、交流(Blankertz等人, 2011;Jahangiri 等人,2019;Panachakel 和 G,2021)、人脸识别(Zhang 等人,2012;Cai 等人,2013;Kaufmann 等人,2013)或 P300 检测(Pires 等人,2011;Azinfar 等人,2013)盖伊等人;等人,2018 年;Shan 等人,2018 年;Mussabayeva 等人,2021 年;Rathi 等人,2021 年;Leoni 等人,2022 年)。只有少数研究同时使用 BCI 系统识别反映不同类型心理内容的多个 ERP 信号,例如音乐(Zhang 等人,2012 年)、面孔(Cai 等人,2013 年;Li 等人,2020 年)或视觉对象(Pohlmeyer 等人,2011 年;Wang 等人,2012 年)。事实上,自大约 40 年前发现 ERP 电位以来(Ritter 等人,1982 年),它已被证明是一种非常可靠的标记
摘要 目的.脑机接口(BCI)低效性意味着将有10%到50%的用户无法操作基于运动想象的BCI系统。值得注意的是,之前对BCI低效性的研究几乎都是基于感觉运动节律(SMR)特征的测试。在本研究中,我们利用SMR和运动相关皮层电位(MRCP)特征评估了BCI低效性的发生情况。方法.在不同的日子里,对93名受试者记录了2个会话中的静息态和运动相关脑电信号数据集。采用公共空间模式(CSP)和模板匹配两种方法提取SMR和MRCP特征,并采用赢家通吃策略利用线性判别分析的后验概率来评估模式识别,以结合SMR和MRCP特征。主要结果.结果表明,两类特征表现出高度的互补性,与它们的弱相互相关性相符。在二分类问题(右脚 vs. 右手)中 SMR 特征准确率较差(< 70%)的受试者组中,SMR 和 MRCP 特征的组合将平均准确率从 62% 提高到了 79%。重要的是,特征组合获得的准确率超过了效率低下阈值。意义。SMR 和 MRCP 的特征组合在 BCI 解码中并不新鲜,但使用 SMR 和 MRCP 特征对 BCI 效率低下进行大规模可重复的研究是新颖的。MRCP 特征对 SMR 特征准确率较差(< 70%)和良好(> 90%)的两个受试者组提供相似的分类准确率。这些结果表明,SMR 和 MRCP 特征的组合可能是降低 BCI 效率低下的一种实用方法。然而,在本研究之后,“BCI 效率低下”可能更恰当地被称为“SMR 效率低下”。