在另一个实验中,学生们有一个电容未知的电容器 CU 。他们想用一个电位差为 4.5 V 的电池和几个已知电容的其他电容器来确定 CU 。他们用电池、未知电容器和其中一个已知电容的电容器创建电路。学生们等到电容器充满电,然后记录已知电容器两端的电位差 Δ V 和未知电容器两端的电位差 Δ VU 。他们的数据显示在下页的表格中。
12. (6 分) 在欧洲核子研究中心的 ALPHA 反氢实验中,反质子沿着光束管传播到实验中。我们需要降低它们的能量,以便将它们与正电子结合以制造反氢。反质子被引入两端之间电位差为 5 kV 的区域。光束中每个反质子会损失多少能量?如果 α 粒子(裸氦核)通过这种电位差加速,它会获得多少能量?为什么当反质子处于具有这种电位差的区域中时,α 粒子会损失能量,而 α 粒子会获得能量?
图 3.(左)我们打算将连接到电力线导体上的传感器模块封装用作传感器电容拾音器的一部分,以最大限度地提高其电容,从而提高灵敏度。(右)电压指的是支持固态电容传感器或 MEMS 传感设备的导体的电压。(电压值从图 2 中的 FEM 模型中获得。)请注意,在距离支撑导体相对较小的地方存在较大的电位差,并且电位差在靠近支撑导体的地方几乎呈线性变化。
传统上,混凝土中钢筋的腐蚀速率是使用极化方法(例如恒电位、恒电流或动电位技术)来确定的。这些技术相当慢,并且都需要与钢筋进行电连接,而这又需要损坏混凝土保护层。因此,尽管精度令人满意,但这些技术很少用于土木工程结构。最近开发的无连接电脉冲响应分析 (CEPRA) 方法消除了钢筋连接的需要,并允许在每次测量不到 10 秒的时间内确定腐蚀速率。这使用户能够以对混凝土元件的最小干扰进行腐蚀调查,并减少检查大型结构所需的时间。该方法基于沿所考虑的钢筋使用 Wenner 阵列探头(四点探头),并在从外部探头施加阶跃电压后监测两个内部探头之间的电位差。利用两个内部探头之间的电位差,可以使用本文档中概述的电路模型确定系统的特性,包括混凝土电阻率和极化电阻/腐蚀率。该技术已作为手持设备 (iCOR®) 商业化,并已在多个实验室和现场研究中使用,其中发现其准确性与其他成熟方法相似。
本研究介绍了一种用于测量电解质密度和评估铅电池分层的新电化学方法的开发和验证。所提出的方法基于两个电极之间的电位差,一个电极由 PbO 2 组成,另一个电极由 Pb 组成,两个电极均通过循环伏安法制备和表征。通过X射线衍射(XRD)和扫描电子显微镜(SEM)证实了电极的形成及其形貌,揭示了特征性的三维结构的存在。使用已知密度的电解质溶液进行的测试表明,测得的电位差和电解质的实际密度之间存在极好的相关性,与使用便携式数字密度计进行的测量相比,精度为±0.001 g/cm3。该方法在60Ah商用电池中进行了铅电池的实际应用,验证了所提出的技术,并与商用设备获得的数据显示出显著的相关性。电解质分层是铅电池中的一个关键问题,而开发的方法提供了一种有效且低成本的工具来监测这种现象。该技术可应用于各种研究项目,以提高铅电池的性能和耐用性。
____ 15. 在以下情况下,电容器极板之间的电荷积累会停止: a. 极板上没有净电荷。 b. 极板上积累的电荷量不等。 c. 极板之间的电位差等于电池端子之间的电位差。 d. 两个极板上的电荷相同。 ____ 16. 将充电电容器的净电荷与同一电容器不充电时的净电荷进行比较, 则净电荷为: a. 充电电容器中的净电荷较大。 b. 充电电容器中的净电荷较少。 c. 两个电容器中的净电荷相等。 d. 充电电容器中的净电荷或多或少,但永远不会相等。 ____ 17. 电容器放电时, a. 必须将其连接到电池上。 b. 电荷通过电路从一个极板移回另一个极板,直到两个极板都没有电荷。 c. 电荷从一个极板移动到另一个极板,直到极板上积累大小相等且方向相反的电荷。 d. 不能将其连接到导电材料上。
考虑了基于材料的自旋阀,其中自旋翻转通过电荷载流子的空间分离而受到抑制,同时保持阀体积的电中性。讨论了将这些阀用作电池的可能性。结果表明,如果控制阀两端的电位差,可能会出现“魔鬼阶梯”等不相容性效应,这与电池充电和放电时发生的库仑相互作用和电子重新分布有关。预测了随着阀中费米能级的变化,传导电子的自发自旋极化的出现和消失的影响。这种自旋阀还可用于实现自旋电子存储单元、超级电容器和类似设备。
长度计量学并不是频率计量学产生根本影响的唯一领域。Kamper 和 Zimmcrmnn 1971 已经完成了一些绝对温度测量,这些测量涉及频率标准和频率计量学 [Kamper 和 Zimmcrmnn 1971]。他们测量了约瑟夫森结振荡器的频率噪声,该振荡器与浸没在低温浴中的电阻耦合。温度 T 与频率噪声通过涉及 h、e 和 k(分别为普朗克常数、电解质电荷和玻尔兹曼常数)的基本物理关系相关。目前,直流电位差(电动势,EMF)的最佳 [即最清晰、最稳定、最便携] 二级标准是约瑟夫森结