可植入的心脏斑块和可注射的水凝胶是心肌梗塞后心脏组织再生的最有希望的疗法之一。将电导率纳入这些斑块和水凝胶被认为是改善心脏组织功能的有效方法。导电纳米材料,例如碳纳米管,氧化石墨烯,金纳米棒以及导电聚合物,例如聚苯胺,多苯胺,多吡咯和聚(3,4-乙基二苯乙烯):多苯乙酸苯甲酸酯具有电硫酸盐具有电势和电位的固定性,因为它们具有电位的固定性,并且具有液位的固定性,并且具有液位的电位,并且具有液位的固定性,并且具有电位的固定性,并且具有液位的电位,并且具有液位的电位,并且具有电位的固定型,并且具有电位的固定性。穿过梗塞区域。许多研究已将这些材料用于具有电活动(例如心脏组织)的生物组织的再生。在这篇综述中,总结了对心脏组织工程及其制造方法使用电导材料的最新研究。此外,突出显示了开发用于输送治疗剂的电导材料的最新进展,作为治疗心脏病和再生心脏组织的新兴方法之一。
摘要:动作的执行或想象由皮质电位反映,可通过脑电图 (EEG) 记录为运动相关皮质电位 (MRCP)。从单次试验中识别 MRCP 是实现脑机接口 (BCI) 自然控制的一项具有挑战性的可能性。我们提出了一种基于最佳非线性滤波器的 MRCP 检测新方法,处理包括延迟样本在内的不同 EEG 通道(获得时空滤波器)。通过改变时间滤波器的顺序和输入数据的非线性处理,可以获得不同的输出。这些滤波器的分类性能通过对训练集进行交叉验证来评估,选择最佳滤波器(适应用户)并从最佳三个滤波器中进行多数投票,以使用测试数据获得输出。将该方法与我们团队最近推出的另一种最先进的滤波器进行比较,该滤波器应用于 16 名健康受试者记录的 EEG 数据,这些受试者执行或想象 50 次自定步调的上肢手掌抓握。新方法对整个数据集的平均准确率为 80%,明显优于之前的滤波器(即 63%)。对于具有异步、自定步调应用程序的在线 BCI 系统设计,它是可行的。
预印本(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此版本的版权所有者于 2021 年 2 月 8 日发布。;https://doi.org/10.1101/2021.02.05.429877 doi:bioRxiv 预印本
我们表明,与事件相关的电位可用于以高度的精度检测精神分裂症。使用我们的机器学习算法,我们达到了平衡的精度为96.4%,这超过了所有结果。为此,除了公共中央传感器外,我们还使用左右半球的其他传感器。记录数据时的实验设计考虑了精神分裂效率副本的功能障碍。由于其严重的后果,精神分裂症是一个社会问题,早期发现和预防起着核心作用。将来,机器学习可用于支持早期干预措施。当第一个症状出现时,可以测试潜在的患者的精神分裂症功能障碍。通过这种方式,可以在精神病发作之前对风险组和潜在患者进行充分治疗。
在这项研究中,确定了纤维素和硝酸纤维素样品的标准形成焓和熵。这些特征用于热力学分析整个纤维素样品和局部硝化的大量硝化,仅对纤维素的无定形结构域(AD)。发现,纤维素的大量硝化作用至1.5的替代程度(DS)是吸热性的,主要取决于温度 - 熵成分对负Gibbs电位的贡献。但是,如果DS高于1.5,则大量硝化变为放热,其可行性取决于焓对Gibbs电位的影响。在纤维素AD的局部硝化的情况下,对Gibbs电位的主要贡献是由反应焓决定了该过程的可行性。表明,随着硝酸纤维素ds的增强,反应的吉布斯电位的负值增加。因此,对较高DS的纤维素硝化在热力学上是有利的。由于局部硝化样品是无定形硝酸纤维素和结晶纤维素的共聚物,因此它们的亲水性应比纤维素明显小。因此,可以预期,局部硝化方法将为纤维素材料的廉价疏水方法找到广泛的实际应用。
简单摘要:将癌症生物标志物用于肿瘤侵袭性是未满足的临床需求。高风险与低风险肿瘤的区分可能指导医生选择针对个别患者风险水平的适当治疗策略。这项研究旨在评估光学氧化还原成像技术的价值,以区分人类黑色素瘤小鼠异种移植模型,其转移与低风险小鼠模型的高风险。两个模型之间发现了几个成像指数显着差异。发现高危模型的氧化状态更高,并且具有较高的肿瘤内氧化还原异质性。这些发现可能会为未来的光学氧化还原成像方法提供进一步的研究开发。
本研究对超低频神经反馈与主动控制条件心率变异性训练进行了正式比较。研究涉及 17 名年龄在 21-50 岁之间、没有神经或精神疾病史但报告了一些生理或心理不适的参与者。在 20 节训练课之前和之后的测试中,通过视觉 Go/NoGo 测试表现和慢 EEG 振荡的频谱功率来监测参与者的进展。在健康状况和视觉 Go/NoGo 测试结果方面,结果显示超低频神经反馈训练优于心率变异性训练。仅在神经反馈队列中观察到超低频范围内振幅的显著升高。关键词:神经反馈;脑电图;超慢 EEG 振荡;心率变异性;超低频训练
神经振荡,也称为脑波,是中枢神经系统(CNS)中的节奏或重复神经活动。振荡活性源自单个神经元或神经间相互作用。在单个神经元水平上,振荡可以作为静息电位的波动或动作电位的节奏而出现,这可以诱导突触后神经元振荡[1-3]。在神经集合的水平上,多个神经元的同步活性唤起了宏观振荡,可以在脑电图上观察到。宏观神经振荡通常是由可能影响多种神经元放电模式的神经内连接引起的。这些神经元之间的相互作用会在各种频带上引起振荡。