采用这种概念,一些跨区域研究比较了刺激呈现后跨区域神经反应开始的时间 13 – 15 或归因于自上而下过程的选择性出现的时间 16 – 20 。其他研究利用同步记录,通过成对脉冲相关性 21 – 26 和信息论测量 27 测量了两个区域之间的时间延迟。同样,局部场电位的跨区域相位延迟也被测量了 28 – 31 。这些基于时间的方法增进了我们对信号如何在大脑区域间传播的理解。然而,由于这些方法主要关注神经元对或神经活动的总体测量,因此关于神经元群体如何协调其活动以实现跨区域信号传导仍有许多未知之处。
,例如,可以将其视为在非相关环境中多体量子系统的模型;这也是在分子之间的远距离相互作用的研究中产生的。多体量子系统的均值限制的工作,其中玻色子的数量很大,但是它们之间的相互作用很弱,也可以追溯到HEPP [30],也可以参见[58],[9],[8],[18],[18]。lieb and Yau [42]在Chandrasekhar的恒星崩溃理论的背景下提到了这一点,该理论说,在恒星死亡之后,取决于其质量,恒星残余物可以采取三种形式之一:中子恒星,白矮人和黑洞。lieb and thirring [41]猜想玻色子星的倒塌可以通过hartree型方程来预测。R 3中的γ= 2的Riesz电位的特殊情况为
神经科学的快速进步为了解许多方面的大脑提供了显着的突破。尽管很有希望,但这些进步在解决意识问题中的作用尚不清楚。基于技术,可以在现代神经科学的掌握范围内,我们讨论了一个思想实验,在有意识的经历期间,以动作电位的形式进行神经活动最初从参与者大脑中的所有神经元记录下来,然后重新播放相同的神经元。我们考虑这种人造重播是否可以重建有意识的体验。从神经科学的角度来理解意识的隐藏成本和陷阱的可能性可能是从神经科学的角度理解意识,并挑战了有因果关系将行动潜力和意识联系起来的传统智慧。
脑机接口(BCI)可以建立大脑与外部设备之间的信息交互,从而实现对活体生物组织行为的有效控制和协调,最终实现生物智能与人工智能的完美融合。[1,2]大脑作为神经系统中最高级的部分,在多维信息处理、智能计算与决策方面具有极高的效率和极低的功耗,这主要归功于神经元之间复杂的连接。[3–7]作为大脑计算引擎的神经元通过突触紧密连接(图1 a)。在生物突触中,传递到突触前神经元的神经电刺激(动作电位)导致电压门控Ca 2 +通道的开放,导致Ca 2 +离子内流,进而诱导胞吐的发生,促进神经递质的释放到突触间隙。来自突触间隙的神经递质在突触后质膜被NMDA和AMPA受体/离子通道接收,导致离子通道的开放或关闭,最终离子内流进入突触后神经元并建立突触后电位,这表明该过程在调节突触后细胞膜电导和膜电位的快速变化中起着重要作用(图1b)。[2,7–9]在此过程中,产生动作电位时膜电位的变化可分为静息、去极化、复极化和超极化四个阶段,如图1c和表1所示。如我们所见,生物系统的实际工作电压要求约为50–120 mV(生物电压)。 [10,11] 另一方面,基于与生物神经系统高度相似的忆阻器的类脑神经形态器件研究取得了重要进展,从根本上突破了冯·诺依曼瓶颈,真正实现了存储与计算的一体化。值得注意的是,受到生物大脑高效计算、低功耗的启发,忆阻器的工作电压与生物系统所需的生物电压相匹配,可以高效地处理复杂信息并进行进一步决策,为与生命体的连接和通信奠定基础。
经颅磁刺激(TMS)产生非侵入性脑刺激,以探测大脑内神经生理过程1。tms脉冲通过将强电流流过TMS线圈绕组而引发。电流诱导电子场是一个时变的磁场,它不受阻碍地穿透头皮和头骨。和大脑中诱导的涡流可以去极化神经元。e-ebient迅速变化。TMS的脉冲持续时间短,脉冲持续时间为1-3 T,上升时间约为50-100μs,TMS具有亚毫秒的时间分辨率,可以实时调节大脑。浅表皮质层比更深的层更强烈地模拟,因为磁场的结果随距离迅速减弱,并且诱导的电子场在头部中心接近零。但是,在通过TMS应用足够的刺激强度(SI)时,诱发的动作电位可能会沿局部局部沿着同一皮质柱和其他皮质和皮层下区域内的皮质层的解剖连接传播,并可能导致整个网络2的激活2。脑电图(EEG)通过测量毫秒的时间分辨率和厘米的空间分辨率研究了大脑中的电生理动力学,通过测量突触后电位的电势差异,而不是放置在头皮2上的电极之间的动作电位的差异。TMS-EEG数据从脑电图响应中得出的数据可用作皮层中兴奋性或连通性的神经生理标记。TMS-EEG数据从脑电图响应中得出的数据可用作皮层中兴奋性或连通性的神经生理标记。与其他可以记录TMS唤起神经活动的神经影像技术(例如fMRI,近红外光谱)(NIR)和PET相比,脑电图是最成功,最常用的组合,由于其廉价和简单性与在线与TMS 2结合。TMS-EEG能够通过测量TMS脉冲对脑电图的影响以及在频域中进一步研究的相关行为效应来操纵和研究脑节律。
阿尔巴尼亚具有未开发的风力电势,尤其是沿着许多具有高风能电位的地区的亚得利亚海岸。该地区的主要部分(应用程序整个表面的2/3是丘陵和山区(该国以东)。 海岸线处于南北的指向。 估计可以通过Eolic Parks产生的Eolic能量的总体潜力超过200,000兆瓦。 在接下来的五年中,阿尔巴尼亚政府的目标是从风能来源产生总电力的5%。整个表面的2/3是丘陵和山区(该国以东)。海岸线处于南北的指向。估计可以通过Eolic Parks产生的Eolic能量的总体潜力超过200,000兆瓦。在接下来的五年中,阿尔巴尼亚政府的目标是从风能来源产生总电力的5%。
对人脑的电刺激已成为一种强大的治疗方式,从而改变了认知和行为的神经回路。最近的证据表明,刺激对生理和行为的影响取决于脑状态的内源性变异,如野外潜在记录所测量。在这里,我们描述了一个60频道的脑计算机界面 - 智能神经刺激系统(SNS),该界面结合了该场电位的频谱特征与多通道刺激功能结合的闭环分析。我们通过基准测试以及从行使设备功能子集的体内卵子研究演示了系统功能。我们的卵巢研究表明,SN可以可靠地测量行为的神经相关性(运动)和刺激的生理效应。我们在一项为期120天的刺激研究后通过组织学证明了刺激的安全性。
富含亮氨酸的重复含量8a(LRRC8A)是体积调节的阴离子通道(VRAC)的关键组成部分,它影响了各种免疫细胞中必不可少的稳态过程。这些过程包括细胞体积和膜电位的调节,以及用作抗癌药物的有机剂和免疫刺激因子的促进。因此,了解LRRC8A的结构 - 功能关系,探索其在免疫中的生理作用,评估其在治疗疾病中的功效,并推进调节其活性的化合物的发展是重要的研究领域。本综述强调了LRRC8A的新兴领域,概述了其结构和功能,并总结了其在免疫细胞发育中的作用以及免疫细胞介导的抗病毒和抗肿瘤作用。此外,它探讨了LRRC8A作为免疫治疗目标的潜力,从而提供了解决持续挑战和未来研究方向的见解。
二维(2D)板和一维(1D)纳米替伯苯格几何形状的磁性拓扑绝缘子(MTIS)和超导体(SCS)的异质结构已预计宿主分别为宿主,手给了Mathiral Majoragana(Maginala Majorana Edge States(CMESS)和Majorana Boundana Boundate(Majorana Boundate)。我们研究了这种MTI/SC异质结构的拓扑特性,随着几何形状从宽平板变为准1D纳米替比系统的变化,并随着化学电位,磁掺杂和诱导的超导配对电位的函数。为此,我们构建了有效的对称性受限的低能汉密尔顿人,以解决真实空间的结构。对于具有有限宽度和长度的纳米替物几何形状,我们观察到以CMES,MBS和共存的CMES和MBS为特征的不同相,因为化学电位,磁性掺杂和 /或宽度是不同的。
我们检查了Bogoliubov-de Gennes Hamiltonian及其对称性对称性,用于分时交换对称性破碎的三维Weyl超导体。在消失的配对电位的极限中,我们指定该哈密顿量在两组持续对称性下是不变的,即u(1)量规对称性和u(1)轴向对称性。尽管Bardeen-Cooper-Schrie Q er类型的配对会自发打破这两个对称性,但我们表明,Fulde-Ferrell-Larkin-ovchinnikov型配对的fulde-ferrell-ferrell-ferrell-larkin-ovchinnikov型配对会自发地破坏u(1)的对称性(然后通过众所周知的超级量表模式恢复了超级质量验证模式)。因此,在前一种情况下,系统中需要两种NAMBU-GOLDSTONE模式来恢复损坏的对称性。我们表明这两种模式之一是出现的伪标量相模式。我们还证明了这种相位模式会导致伪 - 甲壳虫效应。