本文提出了一种机器学习方法,利用 14 个通道收集的脑电图数据来检测驾驶疲劳。为了获得更好的信号质量,使用独立成分分析去除信号中的噪声。使用 CSP 作为特征提取方法,使用 SVM 作为分类器。本文的其余部分组织如下:第 2 节介绍本研究的材料和方法。第 3 节介绍实验结果。第 4 节是研究的讨论和结论。这项工作的一些主要贡献如下:
从脑信号中估计认知或情感状态是创建被动脑机接口 (BCI) 应用程序的关键但具有挑战性的一步。到目前为止,从 EEG 信号中估计心理工作量或情绪仅在中等分类准确度下可行,因此导致不可靠的神经自适应应用。然而,最近的机器学习算法,特别是基于黎曼几何的分类器 (RGC) 和卷积神经网络 (CNN),已显示出对其他 BCI 系统(例如运动想象-BCI)的前景。然而,它们尚未在认知或情感状态分类方面进行正式研究和比较。因此,本文探讨了此类机器学习算法,提出了它们的新变体,并与经典方法对它们进行了基准测试,以从 EEG 信号中估计心理工作量和情感状态(效价/唤醒)。我们研究了这些方法,同时进行了受试者特定和受试者独立的校准,以走向无校准系统。我们的结果表明,在心理负荷研究的两种条件下,CNN 的平均准确率最高,尽管差异并不显著,其次是 RGC。然而,对于情绪数据集(一个训练数据较少的数据集),同一个 CNN 在两种条件下的表现都不佳。相反,事实证明,使用我们在本文中介绍的滤波器组切线空间分类器 (FBTSC),RGC 具有最高的平均准确率。因此,我们的结果有助于提高从 EEG 进行认知和情感状态分类的可靠性。它们还提供了有关何时使用哪种机器学习算法的指导。
脑机接口 (BCI) 是一个研究脑电图信号以增进我们对人类大脑理解的研究领域。BCI 的应用不仅限于脑电波的研究,还包括其应用。对车辆驾驶员特定情绪的研究有限,且尚未得到广泛探索。本研究使用脑电图信号对驾驶员的情绪进行分类。本研究旨在通过分析脑电图信号来研究驾驶模拟车辆时的情绪分类(惊讶、放松/中立、专注、恐惧和紧张)。实验在模拟环境中以两种条件进行,即自动驾驶和手动驾驶。在自动驾驶下,车辆控制被禁用。在手动驾驶下,受试者能够控制转向角、加速度和制动踏板。在实验过程中,受试者的脑电图数据被记录下来,然后进行分析。
大脑由数十亿个神经元组成,它们控制着我们的所有行为。在癫痫发作时,大脑信号的模式顺序会发生改变,导致个体大脑出现癫痫样放电。大约 1% 的世界人口患有癫痫,因此需要进行一些研究来帮助诊断和治疗这种疾病。这项工作的目的是开发一种基于机器学习的方法,使用非侵入性脑电图 (EEG) 预测癫痫发作。因此,使用 CHB-MIT 数据库对发作间期和发作前状态进行分类。该算法是使用独立于患者的方法预测多个受试者的癫痫发作而开发的。离散小波变换用于在 5 个级别上对 EEG 信号进行分解,并研究了频谱功率、平均值和标准差作为特征,以分析哪一个会呈现最佳结果,并使用支持向量机 (SVM) 作为分类器。该研究的功率、标准差和平均值特征分别实现了 92.30%、84.60% 和 76.92% 的准确率。
摘要 — 近年来,深度学习 (DL) 方法在基于脑电图 (EEG) 的运动想象 (MI) 脑机接口 (BCI) 系统的开发中越来越受欢迎,旨在提高现有中风康复策略的性能。复杂的深度神经网络结构具有大量神经元和数千个参数需要优化,并且通常需要大量数据来训练网络,并且训练过程可能需要非常长的时间。高训练成本和高模型复杂度不仅对 BCI 系统的性能产生负面影响,而且影响其满足支持患者康复锻炼的实时要求的适用性。为了应对这一挑战,本文提出了一种基于贡献的神经元选择方法。实现了基于卷积神经网络 (CNN) 的运动想象分类框架,并开发和应用了神经元修剪方法。利用 CNN 层捕捉脑电信号的时空特征,然后采用快速递归算法(FRA)对全连接层中的冗余参数进行修剪,从而在不影响 CNN 模型性能的情况下降低其计算成本。实验结果表明,该方法可以实现高达 50% 的模型尺寸缩小和 67.09% 的计算节省。
摘要:大气总水蒸气含量 (TWVC) 会影响气候变化、天气模式和无线电信号传播。全球导航卫星系统 (GNSS) 等最新技术用于测量 TWVC,但精度、时间分辨率或空间覆盖范围均有所降低。本研究证明了使用扩频 (SS) 无线电信号和低地球轨道 (LEO) 卫星上的软件定义无线电 (SDR) 技术预测、绘制和测量 TWVC 的可行性。提出了一种来自小型卫星星座的卫星间链路 (ISL) 通信网络,以实现 TWVC 的三维 (3D) 映射。然而,LEO 卫星的 TWVC 计算包含电离层总电子含量 (TEC) 的贡献。TWVC 和 TEC 贡献是根据信号传播时间延迟和卫星在轨道上的位置确定的。由于 TEC 与 TWVC 不同,依赖于频率,因此已经实施了频率重构算法来区分 TWVC。这项研究的新颖之处在于使用时间戳来推断时间延迟、从星座设置中独特地推导 TWVC、使用算法实时远程调谐频率以及使用 SDR 进行 ISL 演示。这项任务可能有助于大气科学,测量结果可以纳入全球大气数据库,用于气候和天气预报模型。
有关量子计算的文献表明,与传统计算相比,量子计算在计算时间和结果方面可能更具优势,例如在模式识别或使用有限的训练集时 [14, 5]。一个无处不在的量子计算库是 Qiskit [1]。Qiskit 是一个在 Apache 2.0 下分发的 IBM 库,它同时提供量子算法和后端。后端可以是本地机器,也可以是远程机器,可以模拟它,也可以是量子机器。Qiskit 对您想要使用的机器类型的抽象使量子算法设计变得无缝。Qiskit 实现了支持向量类分类器的量子版本,称为量子增强支持向量分类器 (QSVC) [10]。在分类任务复杂的情况下,QSVC 可能比传统 SVM 更具优势。任务复杂性随着数据编码为量子态、可用数据的数量和数据质量的提高而增加。在 [6] 中,我们提出量子分类可能对依赖脑电图 (EEG) 的脑机接口具有巨大的潜力。基于这个想法,我们研究了 EEG 信号量子分类的可行性 [7],通过使用 QSVC 结合黎曼几何 -
癫痫发作预测是治疗耐药性癫痫最常用的辅助策略之一。由于个体间差异,传统方法通常从同一患者身上收集训练和测试样本。然而,不同受试者之间的领域转移这一棘手问题仍未解决,导致临床转化率低。在本文中,提出了一种基于领域自适应 (DA) 的模型来解决这个问题。利用短时傅里叶变换 (STFT) 从原始脑电图数据中提取时频特征,并开发自动编码器将这些特征映射到高维空间。通过最小化嵌入空间中的域间距离,该模型学习了域不变信息,从而通过分布对齐提高了泛化能力。此外,为了增加其应用的可行性,本文模拟了临床采样情况下的数据分布,并在此条件下测试了模型,这是首次采用该评估策略的研究。在颅内和头皮EEG数据库上的实验结果表明,与以前的方法相比,该方法可以有效地最小化域间隙。
摘要:由于信噪比低且通常存在来自不同来源的伪影,脑电图 (EEG) 信号分类是一项具有挑战性的任务。之前已经提出了不同的分类技术,这些技术通常基于从 EEG 频带功率分布图中提取的一组预定义特征。然而,EEG 的分类仍然是一个挑战,这取决于实验条件和要捕获的反应。在这种情况下,深度神经网络的使用提供了新的机会来提高分类性能,而无需使用一组预定义的特征。然而,深度学习架构包含大量超参数,模型的性能依赖于这些超参数。在本文中,我们提出了一种优化深度学习模型的方法,不仅是超参数,还有它们的结构,该方法能够提出由不同层组合组成的不同架构的解决方案。实验结果证实,通过我们的方法优化的深度架构优于基线方法,并产生计算效率高的模型。此外,我们证明优化的架构相对于基线模型提高了能源效率。
基于脑电信号的脑机交互(BCI)可以帮助肢体运动障碍患者进行日常生活及康复训练,然而由于信噪比低、个体差异大,脑电特征提取与分类存在准确率和效率低下的问题。针对该问题,本文提出了一种基于深度卷积网络的运动想象脑电信号识别方法。该方法首先针对脑电信号特征数据质量不高的问题,利用短时傅里叶变换(STFT)和连续Morlet小波变换(CMWT)对采集的实验数据集进行基于时间序列特征的预处理,从而得到特征鲜明、具有时频特征的脑电信号。并基于改进的CNN网络模型对脑电信号进行高效识别,实现高质量的脑电特征提取与分类。进一步提高脑电信号特征采集的质量,保证脑电信号识别的较高准确率和精度。最后基于BCI竞赛数据集和实验室实测数据对所提方法进行验证,实验结果表明该方法对脑电信号识别的准确率为0.9324,精度为0.9653,AUC为0.9464,具有良好的实用性和适用性。