本期特刊旨在收集纳米结构晶体半导体领域的最新进展,用于能量转换,化学和物理感测,光电和电催化以及生物医学应用。将特别关注的是贡献,重点是晶体结构和纳米级形态在功能特性上的作用,以及结构 - 培训关系的建模预测以及无原始合成技术的发展。We invite the submission of papers on the following topics, including but not limited to: inorganic nanostructured binary and ternary semiconductors, e.g., metal oxides and chalcogenides, silicon and germanium nanocrystals, 2D semiconductors, nanoscale homo- and heterojunctions, doped semiconducting nanomaterials, Perovskite纳米结构和量子点。此外,预计特刊将强调最近在具有半导体特性和混合无机 - 有机有机物半导体的有机晶体纳米结构的挑战和新颖的应用。
Shimshon Gottesfeld于1941年3月17日出生于海法。他获得了D.Sc.1970年的化学技术。 1972年,在DostDoc Research之后,他加入了特拉维夫大学的化学学院,并晋升为Assoc。 教授 他使用光谱技术将研究重点放在电化学界面上。 他研究了电催化和光电化学能量转化过程的基本和应用方面。 从1977年到1979年,他在新泽西州默里山的贝尔实验室度过了一个延长的休假,调查了电致色素材料。 在1984年,他在洛斯阿拉莫斯国家实验室(LANL)呆了一场休假,并留在那里,并于1987年成为LANL燃料电池研究计划的技术项目负责人。 在1980年代和1990年代,该团队在LANL的工作创造了一种世界认可的技术,可实现聚合物电解质燃料电池(PEFC)和直接甲醇燃料电池(DMFC)。 在此期间,Gottesfeld博士还基于电子导电聚合物作为活性材料而在超平球中启动和定向工作。1970年的化学技术。1972年,在DostDoc Research之后,他加入了特拉维夫大学的化学学院,并晋升为Assoc。教授他使用光谱技术将研究重点放在电化学界面上。他研究了电催化和光电化学能量转化过程的基本和应用方面。从1977年到1979年,他在新泽西州默里山的贝尔实验室度过了一个延长的休假,调查了电致色素材料。在1984年,他在洛斯阿拉莫斯国家实验室(LANL)呆了一场休假,并留在那里,并于1987年成为LANL燃料电池研究计划的技术项目负责人。在1980年代和1990年代,该团队在LANL的工作创造了一种世界认可的技术,可实现聚合物电解质燃料电池(PEFC)和直接甲醇燃料电池(DMFC)。在此期间,Gottesfeld博士还基于电子导电聚合物作为活性材料而在超平球中启动和定向工作。
用催化剂执行了约80-90%的化学过程。例如,从自由氮中生产氨的Haber-Bosch过程以大于150杆的压力运行,并以铁作为主要催化剂的温度达到450°C。这种必不可少的过程是我们体内20%的氮的20%,并且消耗了1%的全球能量支出(并为全球碳足迹贡献了1-2%)。镍和钴掺杂的MOS 2充当燃料的主要氢化化和氢化硝化催化剂。通过电催化过程将水分开为氧气和氢,是预计零碳足迹2050 World的最受欢迎的反应之一。与几乎任何其他催化剂一样,2D-材料纳米颗粒(NP)不能用作执行有用的催化过程。可以区分两种类型的催化剂:掺杂的2D-材料NP和混合材料。
用电子向分子发电的净零碳燃料生成电力驱动的工艺可以直接或与化学或生物过程结合使用,从而减少了二氧化碳和生物量(廉价捕获CO2)的原料或化学物质或化学物质。净零产品是没有净温室气体排放或碳足迹的产品。例如,在NREL,随时可用的化合物(例如二氧化碳和水)通过电催化而转化为反应性中间体,并与生物或催化过程相结合,以产生我们今天使用的化合物,以使化学物质,质体和纤维制成化学物质。这些途径包括成熟的工业技术和有前途的替代方法,这些方法需要重大的早期研究以应对技术和商业化障碍。需要在各种电化学,生物电化学和杂化电化学/生化途径中进行研究。
金属有机框架(MOF)是具有不同,可调功能,高孔隙率和表面积的创新多孔材料,使它们有望在气体存储,分离和催化应用中使用。此外,它们的衍生物还补偿了MOF缺乏电子电导率和化学稳定性,为精确控制材料结构提供了新的最佳选择。已经基于MOF创建了许多有效的电催化剂,它们的衍生物是对金属空气电池中的O2降低/进化过程和二氧化碳的降低/进化反应。在这篇综述中,我们重点介绍了金属电池中MOF及其衍生物的最新发展,并探讨了这些材料的结构特性及其各自的作用模式。通过彻底审查MOF的收益,问题和前景,我们可以更好地了解电催化和能源储能技术的未来发展。
1 CSIR-中央电化学研究所 (CECRI) 电子和电催化部,Karaikudi, Sivagangai 630003,泰米尔纳德邦,印度; siva.cecri21a@acsir.res.in (SAM); sindhumonicam98@gmail.com (SMM) 2 科学与创新研究院 (AcSIR),加济阿巴德 201002,印度北方邦; shansda@cecri.res.in(上海); tpswamy@cecri.res.in (SPT) 3 CSIR-中央电化学研究所 (CECRI) 腐蚀与材料保护部,Karaikudi, Sivagangai 630003, Tamil Nadu, India 4 石油与能源研究大学 (UPES) 工程学院,Dehradun 248001,Uttarakhand,印度; akaushik@floridapoly.edu 5 纳米生物技术实验室,佛罗里达理工大学环境工程系,美国佛罗里达州莱克兰 33805-8531 6 动物学系,Shri Pundlik Maharaj Mahavidyalaya Nandura,Buldana 443404,马哈拉施特拉邦,印度;ravikumar.shinde@gmail.com 7 中央仪器设施,CSIR-中央电化学研究所,Karaikudi,Sivagangai 630003,泰米尔纳德邦,印度* 通讯地址:pandiaraj@cecri.res.in
本期特刊涵盖了可再生能源转换和存储、传感和电催化剂技术的最新进展。因此,我们诚邀有关科学进展、新发现、案例研究、评论以及分析和数值模拟的论文,重点介绍用于能源存储和转换设备的新型纳米材料的发展,包括但不限于: - 先进的可充电电池和超越锂离子电池:金属离子、金属空气和氧化还原液流电池; - 超级电容器和混合电容器和超级电容器; - 电催化、氧还原反应、氧析出反应、氢析出反应; - 能量转换装置:燃料电池、水电解器、微生物燃料电池; - 化学能存储:氢气的生成和存储以及二氧化碳的减排; - 绿色能源:可再生能源、高效能源、效率测量、改进和优化方法; - 热电和热电化学电池; - 压电和自充电/放电装置。
摘要:在当今时代,电力被视为基本公用事业。我们永远无法想象没有机器的生活。因此,电力在公共事业中起着基本作用。这种电力的灵活和有用的来源之一是电池。电池是任何设备的基本但最强大的部件。因此,生物电池是一种由有机化合物驱动的储能设备。生物电池从取之不尽的能源中产生电力,提供持续的、按需的灵活能源。通过使用催化剂分解有机化合物,生物电池直接从中获取能量。生物电池是替代能源设备,依赖于蛋白质或微生物对常规底物的生物电催化。本文提出了另一种替代解决方案,它不仅对环境友好,对地球有益,而且可以结束对不可取和消失的能源的担忧。关键词:生物燃料电池(BFC)、电子电荷转移(ECT)、国防部(DOD)。
Miguel Garc´ı tecedor(Physics 2017博士,Madrid大学)是Imdea Energy的高级助理研究员。在他的博士学位期间,他专注于半导体纳米结构及其在光电和能量中的应用。作为他的国际博士学位的一部分,他于2015年加入了位于挪威Kjeller的能源技术研究所,从事有机太阳能电池钝化的有机无机复合材料的合成和表征。2017年7月,他在Jaume I大学高级材料研究所担任研究科学家,以制定(照片)电催化水分分割和CO 2减少的新颖策略。最近,2021年3月,Miguel加入了IMDEA Energy的光活化过程单元,以使用照片(Electro)催化方法,用于废水氧化,CO 2还原和n 2Xation。Miguel目前是45家科学出版物的合着者,他参加了14个研究项目,是三名首席研究员。
过渡金属氧化物(TMO)由于其性质和应用范围而引起了显着关注。具有高度电负氧原子的过渡金属离子的部分填充的d轨道产生了独特的电子结构,由于其磁性,光学和结构特性,导致多种应用。这些特性对化学反应具有直接影响,该化学反应能够为催化中的特定应用定制材料,例如电催化和光催化。虽然TMO的潜力有希望,但它们的发展功能性能带来了许多挑战。在这些挑战中,确定适当的合成过程和采用最佳特征技术至关重要。在这篇全面的综述中,将概述高度功能性TMO的综合和表征以及陶瓷的概述以及对催化应用的强调涵盖。中孔材料在增强其在各种应用中的功能方面起着关键作用,并将被涵盖。Ab-Initio建模方面。