在高电流操作条件下发展高性能的氧气进化反应(OER)电催化剂对于碱性水电解的未来商业应用至关重要。在此,我们准备了一个三维(3D)双金属氧氧化物杂交杂种,该杂交杂种在Ni泡沫(NifeOOOH/NF)上生长,该杂种是通过将Ni Foam(NF)浸入Fe(NO 3)3溶液中制备的。在这种独特的3D结构中,NifeOOH/NF杂种由Crystalline Ni(OH)2和NF表面上的无定形FeOOH组成。作为双金属氧氧化电催化剂,NifeOOOH/NF混合动力表现出极好的催化活性,不仅超过了其他报道的基于NI -FE的电催化剂,而且超过了商业IR/C催化剂。原位电化学拉曼光谱学证明了参与OER过程的活性FeOOH和NiOOH相。从Fe和Ni催化位点的协同作用中,NifeOOOH/NF混合动力在80 C的10.0 mol l 1 KOH电解质下在具有挑战性的工业条件下提供了出色的OER性能,需要在1.47和1.51 V中的潜力,以达到1.47和1.51 V,以达到1.47和1.51 V,以达到超高的催化电流的100和500 mA。2021作者。由Elsevier Ltd代表中国工程学院和高等教育出版社有限公司出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
摘要:质子交换膜水电解仪(PEM-WE)是一种著名的氢生产绿色技术。大规模开发的主要障碍是氧气进化反应(OER)的动力学。目前,对OER的酸稳定电催化剂的设计构成了电催化中的重要活性。本评论介绍了对氧气演化,反应机理和OER描述符的高级电催化剂设计的基本原理和策略的分析。对OER电催化剂的审查进行了从单一到多元素的元素组成。此外,总结了高渗透合金(HEAS)的目的(HEAS),用于设计高级材料的设计。brie tove the the的影响,对调节催化剂的电子特性有益的支持材料的影响。最后,给出了酸性OER电催化剂的前景。
简介。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3594碱性培养基中还原反应。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3594 ORR在碱性培养基中的一般原理和机制。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3595个在阴离子交换膜燃料电池中的ORR的电催化剂。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。3595个在阴离子交换膜燃料电池中的ORR的电催化剂。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3598碳纳米管。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3598石墨烯。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3599生物质量衍生的碳。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3599杂种掺杂的碳设计和合成。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>3599氮气cnts。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 3601硼偏用的中枢神经系统。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>3599氮气cnts。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3601硼偏用的中枢神经系统。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3605磷掺杂的CNT。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3607共同掺杂的CNT。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3607金属氮掺杂的CNT。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3610氮掺杂的谷物。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3611:泛图。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3611磷掺杂的谷物。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3612共掺杂/多杂种掺杂石墨烯。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3612金属,杂体共掺杂石墨烯。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3615生物启发的ORR催化剂。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3617 AMFC性能和稳定性。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3620结论和勘探的依据。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3621竞争利益声明。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3623致谢。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3623参考。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3623
之前的隶属关系为:Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC 3168, Australia。更正后的隶属关系为:Australian Synchrotron, ANSTO, Clayton VIC 3168, Australia。
摘要:金属-空气电池,特别是锂-空气和锌-空气电池,由于其理论比能量高、安全和环境友好而引起了广泛的关注和研究。然而,正极动力学缓慢是阻碍其实际电化学性能的关键因素之一。为了解决这个问题,使用高效催化剂是一种可行有效的策略。在已报道的各种催化剂中,高熵合金(HEA)由于其可调的组成和电子结构已成为一种很有前途的催化剂。因此,在HEA催化体系中取得了令人鼓舞的电池性能。在本综述中,我们首先总结了具有代表性的金属-空气电池,包括锂-O 2 、锂-CO 2 和锌-空气电池的反应机理和挑战,然后介绍了HEA的合成方法和核心效应。我们还总结了HEA在这些电池中的一些研究进展。最后,我们对HEA在金属-空气电池中的未来研究前景进行了展望。
快速发现新型高性能电催化剂对于促进化学和材料行业的电化学革命至关重要。1,2然而,从大量可能的设计空间中识别最有希望的催化剂系统代表了一个重要的挑战。3,这种挑战会随着电催化剂设计的细微差别而加剧,扩展到新型材料类别,在这种新型材料类别中,确定最佳的活动趋势可能是高度不平凡的。不仅新近培养的催化剂需要具有最佳的催化活性,而且还需要满足其他几个绩效限制,以便在工业规模上相关。例如,(1)任何有前途的候选系统都必须在经济上可行(例如能够以相对较低的成本以相对较低的成本进行大规模合成),(2)候选系统必须在动态和操作上稳定,等等。因此,理想高性能催化剂的发现和设计需要平衡几个标准,不限于催化性能,
摘要:寻求经济可持续的电催化剂来代替氧气进化反应(OER)中的关键材料(OER)是电化学转化技术的关键目标,在这种情况下,金属有机框架(MOF)作为替代的电活性材料提供了很大的希望。在这项研究中,通过在氮掺杂的石墨烯上生长量身定制的基于Ni-Fe的MOF,成功合成了一系列纳米结构的电催化剂,从而创建了名为MIL-NG-N的复合系统。它们的生长是使用分子调节剂调整的,揭示了该性质的非平凡趋势,这是调节剂数量的函数。最活跃的材料表现出了出色的OER性能,其特征在于1.47 V(vs.RHE)达到10 mA cm -2,低Tafel斜率(42 mV dec -1),稳定性超过0.1 M KOH。这种出色的性能归因于唯一的MOF架构和N掺杂石墨烯之间的协同作用,从而增强了活动位点的量和电子传输的数量。与MOF和N掺杂石墨烯的简单混合物或N掺杂石墨烯上的Fe和Ni原子的沉积相比,这些杂种材料显然表现出了明显的OER性能。
通过简单的合成方法利用基于地球丰富元素的低成本,高活性和鲁棒的氧气进化反应(OER)电催化剂,这对于通过水电解而对绿色水力产生而言至关重要。在这项工作中,Nio,Co 3 O 4和Nico 2 O 4纳米颗粒层具有相同的表面形态,通过简单的喷雾热解方法在相同的沉积条件下制备了相同的表面形态,并且相对研究了其OER活性。在所有这三个电催化剂中,NICO 2 O 4显示了420 mV的最低电位,以驱动基准电流密度为10 mA cm -2和最小的Tafel斜率(84.1 mV dec -1),这些密度与基准标准的商业RUO 2电催化剂的OER性能相当。NICO 2 O 4的高OER活性归因于Co和Ni原子之间电子性质的协同作用和调制,这大大降低了驱动OER活动所需的过电位。因此,据信,通过这种简单方法合成的NICO 2 O 4将是一种竞争性候选者作为工业电催化剂,具有高效率和低成本的大规模绿色氢生产,这是通过水电解产生的。
谷物宽度和重量2(GW2)是一种E3-泛素连接酶编码基因,对谷物物种中谷物的大小和重量负调节。因此,建议禁用GW2基因活性以提高作物生产率。我们在这里表明,大麦GW2.1同源物的CRISPR/CAS介导的诱变会导致细长谷物的发展和蛋白质含量增加。同时,GW2.1功能的损失引起了由于尖峰数量减少和谷物设置低而引起的明显晶粒屈服不足。我们还表明,GW2.1缺乏作物产量和蛋白质含量引起的相反作用在很大程度上与培养条件无关。这些发现表明大麦GW2.1基因对于产量和晶粒性状之间的优化是必需的。总的来说,我们的数据表明,大麦中GW2.1基因活性的丧失与多效性效应相关,对生成器官的发展以及因此谷物产生产生了负面影响。我们的发现有助于更好地理解谷物的发育以及GW2.1控制大麦的定量和定性遗传改善中控制的UTI。
摘要:锌 - 碘(Zn -i 2)电池对其高能量密度,低成本和固有安全性引起了极大的关注。然而,包括聚二维溶解和穿梭,碘迟发的氧化还原动力学和低电导率的几个挑战限制了它们的实际应用。在此,我们通过将Ni单原子(NISA)均匀分散在分层多孔碳骨架(NISAS-HPC)上,为Zn-I 2电池设计了高效的电催化剂。原位拉曼分析表明,由于Nisas具有显着的电催化活性,因此使用NISAS-HPC显着加速了可溶性聚二维(I 3 - 和I 5 - )的转化。带有NISAS-HPC/I 2阴极的结果Zn-I 2电池提供了出色的速率能力(在50 C时为121 mAh g-1)和超循环稳定性(在50 c时超过40 000个循环)。即使在11.6 mg cm -2碘以下,Zn -i 2电池仍然表现出令人印象深刻的循环稳定性,其容量保留为93.4%和141 mAh g -1,在10 c.关键字上10 000循环后,关键字:锌 - 碘化物 - 碘磁带,多二维,诸如乘坐,电气效应,电型,电动