本期特刊涵盖了可再生能源转换和存储、传感和电催化剂技术的最新进展。因此,我们诚邀有关科学进展、新发现、案例研究、评论以及分析和数值模拟的论文,重点介绍用于能源存储和转换设备的新型纳米材料的发展,包括但不限于: - 先进的可充电电池和超越锂离子电池:金属离子、金属空气和氧化还原液流电池; - 超级电容器和混合电容器和超级电容器; - 电催化、氧还原反应、氧析出反应、氢析出反应; - 能量转换装置:燃料电池、水电解器、微生物燃料电池; - 化学能存储:氢气的生成和存储以及二氧化碳的减排; - 绿色能源:可再生能源、高效能源、效率测量、改进和优化方法; - 热电和热电化学电池; - 压电和自充电/放电装置。
本文介绍了锂硫 (Li-S) 储能电池的应用,同时展示了几种缓解其电化学挑战的技术的优缺点。无人机、电动汽车和电网规模储能系统是 Li-S 电池的主要应用,因为它们成本低、比容量高、重量轻。然而,多硫化物穿梭效应、低电导率和低库仑效率是 Li-S 电池面临的关键挑战,导致体积变化大、树枝状生长和循环性能受限。固态电解质、界面夹层和电催化剂是缓解这些挑战的有前途的方法。此外,纳米材料能够改善 Li-S 电池的动力学反应,这是基于纳米粒子的几种特性,将硫固定在阴极中,稳定阳极中的锂,同时控制体积增长。考虑到基于可再生能源的环保系统,Li-S 储能技术能够满足未来市场对高功率密度、低成本的先进充电电池的需求。
在本报告中,我们描述了在 NeurIPS 2021 上举办的开放催化剂挑战赛,该挑战赛的重点是使用机器学习 (ML) 来加速寻找可以驱动将可再生能源转化为可储存形式的反应的低成本催化剂。具体来说,挑战赛要求参与者开发用于松弛能量预测的 ML 方法,即给定吸附质-催化剂系统的原子位置,目标是预测系统松弛或最低能量状态的能量。为了在这项任务上表现出色,ML 方法需要近似密度泛函理论 (DFT) 中的量子力学计算。通过对这些进行准确建模,可以估计催化剂对化学反应总体速率的影响;这是筛选潜在电催化剂材料的关键因素。挑战赛鼓励整个社区在这项任务上取得进展,获胜方法将直接松弛能量预测相对于之前的最先进水平提高了约 15%。
氧电催化对于先进的能源技术至关重要,但由于缺乏地球上含量丰富的高活性催化剂,仍然存在极大的挑战。在此,通过纳米结构和缺陷工程,我们通过将天然存在但通常不活跃的赤铁矿 (Ht) 转化为具有氧空位 (Ov-Hm) 的赤铁矿 (Hm) 来增强其催化性能,使其成为一种高效的氧气析出反应 (OER) 催化剂,甚至优于最先进的催化剂 IrO 2 /C,在 250 mV 的较低过电位下电流密度为 10 mA/cm 2。第一性原理计算表明,Hm 表面上的降维和缺陷会局部改变吸附位点周围的电荷,从而降低 OER 过程中的势垒。我们的实验和理论见解为从天然存在且丰富的材料中开发用于 OER 应用的高活性电催化剂提供了一条有希望的途径。
3. 高性能太阳能电池的纳米结构工程 4. 纳米材料在气体到燃料的转化、储存和利用中的应用 5. 双功能纳米催化剂在水分解中的应用及其挑战 6. 纳米结构先进储氢材料 7. 先进纳米催化剂在燃料电池技术中的应用 8. 不同尺寸纳米材料在先进电催化剂中的应用 9. 纳米材料在电化学和生物传感器中的应用 10. 新兴纳米结构在光催化中的应用 11. 纳米材料在表面涂层、防腐和油漆中的应用 12. 纳米材料在气体检测和去除中的应用 13. 纳米材料在细菌和病毒污染水处理中的应用 14. 纳米结构材料在土壤污染物去除中的应用 15. 材料与技术的总结和未来展望
作为碳捕获和利用方面的一致努力的一部分,电化学二氧化碳还原反应(CO 2 RR)是实现圆形碳经济的有前途的方法。二维金属碳化物和氮化物(MXENES)由于其可调的电子和表面性能而被吹捧为CO 2 RR的一种有吸引力的材料,这为破坏了传统过渡金属催化剂的中间结合能的线性缩放关系提供了可能的途径。尽管有大量的理论研究对MXENES作为CO 2 RR电催化剂的乐观前景,但仍有无数的未解决的问题以及未开发的设计机会,需要进一步的实验性优化才能实现MXENES的承诺潜力。在此,我们讨论了MXENES如何打破上述比例关系,以及MXENES修饰的方法可以改善其催化性能,包括缺陷工程和MXENES异质结构。最后,我们通过总结了当前的挑战和可能带来的策略,以实现MXENES的潜力。
(图 2a)。形成的词簇显示了氢能研究的趋势:作为可再生能源(红色标记;图 S1,补充信息 (SI) 部分),作为试剂或化学和物理反应的产物(绿色;图 S2,SI 部分),其在光催化生产方法中的应用(深蓝色;图 S3,SI 部分),其在发动机中的应用及其对污染物排放的影响(黄色;图 S4,SI 部分),其与其他材料的相互作用(紫色;图 S5,SI 部分),其通过使用电催化剂的电化学反应生产(浅蓝色;图 S6,SI 部分)以及存储方式(橙色;图 S7,SI 部分)。有趣的是,在图 2b 中观察到与出版年份相关的簇的组织。关于氢能的最统一主题更接近黄色簇,而最先进的研究是紫色簇。这意味着本综述中涵盖的主题处于有关氢的知识的前沿,下面将详细讨论。
摘要:基于PT的纳米催化剂为各种行业提供了出色的前景。然而,具有出色性能的PT负载低负载,以提高纳米催化剂的高效和稳定的纳米催化剂。在这项研究中,通过原位合成制备了具有超高PT含量,表现性能和碳黑色作为支持的纳米催化剂。这些〜2-nm颗粒在碳黑色和PT之间存在很强的S – P-D轨道杂交,从而均匀且稳定地脱离了碳黑色。这种独特的结构对氢进化反应有益。催化剂在氢进化反应中表现出显着的催化活性,在100 mA·Cm -2时表现出100 mV的电势,与商业PT/C催化剂的催化反应相当。质量活性(1.61 A/mg)是商用PT/C催化剂(0.37 A/mg)的四倍。超大PT加载(6.84wt%)为下一代电催化剂的发展铺平了道路。
由电催化总体水分割产生的氢,由氢进化反应(HE)和氧气进化反应(OER)组成,是一种有希望的绿色技术,用于未来的能量转换和存储。OER的动力学缓慢,这是多个电子传输和化学中间体的结果(即,ho*,o*和hoo*)充当水分分裂的瓶颈,并主导着这项技术的整体效率。1加快了OER的速度并使大规模的水分裂实用,地球丰富,高度和耐用的电催化材料是非常需要且急需的。近年来,过渡金属硼化物,碳化物,pnictides和辣椒剂,我们在这里将所有这些都称为“ TM X-ides”,已将大量注意作为可行的氧气演化电催化剂。2–9除某些特殊情况外(例如,fep,ni 3 se 2和ni 3 te 2),10–12大多数TM X-ZED在OER的电势下被自氧化成其TM氧化物/(氧)氢氧化物对应物。13–20作为新形成的TM氧化物/(氧)氢氧化物物种比
摘要:可充电锌空气电池 (ZAB) 具有高理论能量密度、高电池电压和环境友好性,可在向更清洁、更可持续的能源系统过渡中发挥重要作用。ZAB 的空气阴极是预测电池整体性能的主要决定因素,因为它分别负责在放电和充电过程中催化氧还原反应 (ORR) 和氧释放反应 (OER)。在本研究中,使用基准双功能氧电催化剂 (Pt/C-RuO 2 ) 对空气阴极的结构进行了详细的优化研究。根据商用气体扩散层 (GDL) 的选择、热压催化剂层 (CL) 的影响以及集电器的最佳孔径优化了空气阴极的组成和结构。本研究中的最佳阴极显示最大功率密度(PD max)为167 mW/cm 2 ,往返效率和电压间隙(E gap )分别为59.8%和0.78 V,表明本研究中提出的空气阴极制备方法是提高ZAB整体性能的一种有前途的策略。