调制器在每位能耗方面极其节能 [5],并能克服基于等离子体色散效应的电流调制器在速度、噪声和功耗方面的限制 [6]。这依赖于在小电极分离下可达到的高电场值,能够在电荷的排斥/去除方面引起更有效的折射率变化。事实上,电场会沿共轭聚合物链引起电子的离域,因此不需要像等离子体色散效应那样进行载流子传输。在绝缘体上硅 (SOI) 技术中使用有机材料的能力引起了各个科学领域的极大兴趣,包括但不限于高速调制器 [7]、可调光学滤波器 [8]、高精度计量 [9] 和频率梳 [10]。然而,非线性光学材料在SOI技术平台的混合集成仍是当前研究的重点,线性和二次电光效应是这一进展的主要内容,需要进一步研究。
调制器在每位能耗方面极其节能 [5],并能克服基于等离子体色散效应的电流调制器在速度、噪声和功耗方面的限制 [6]。这依赖于在小电极分离下可达到的高电场值,能够在电荷的排斥/去除方面引起更有效的折射率变化。事实上,电场会沿共轭聚合物链引起电子的离域,因此不需要像等离子体色散效应那样进行载流子传输。在绝缘体上硅 (SOI) 技术中使用有机材料的能力引起了各个科学领域的极大兴趣,包括但不限于高速调制器 [7]、可调谐光学滤波器 [8]、高精度计量 [9] 和频率梳 [10]。然而,非线性光学材料在SOI技术平台的混合集成仍是当前研究的重点,线性和二次电光效应是这一进展的主要内容,需要进一步研究。
摘要 高维希尔伯特空间以及控制光子多个自由度并使其纠缠的能力使得各种量子信息处理应用能够实现新的量子协议。在这里,我们提出了一种方案,使用在路径(位置)空间和频域中实现偏振控制量子行走所需的操作元件来生成和控制偏振-路径-频率纠缠。超纠缠态表现为使用干涉装置的受控动力学,其中半波片、分束器和频率移位器(例如基于电光效应的移位器)分别用于操纵偏振、路径和频率自由度。重点是利用偏振来影响频率和位置空间中特定值的移动。计算子空间之间的负性以证明三个自由度之间纠缠的可控性,并使用去偏振通道模拟噪声对纠缠的影响。报告的进展以及使用光量子态实现量子行走的实验演示使量子行走成为一种生成超纠缠态的实用方法。
MEVD – 301(A) 光电子集成电路 第一单元光波导理论:波导理论:一维平面波导、二维波导、超越方程、波导模式、模式截止条件。 第二单元光波导制造和特性:波导制造:沉积薄膜;真空沉积和溶液沉积、扩散波导、离子交换和离子注入波导、III-V 化合物半导体材料的外延生长、通过湿法和干法蚀刻技术塑造波导。波导特性:表面散射和吸收损耗、辐射和弯曲损耗、波导损耗测量、波导轮廓分析。 第三单元光耦合基础:横向耦合器。棱镜耦合器。光栅耦合器。光纤到波导耦合器。光波导之间的耦合。定向耦合器。定向耦合器的应用。单元 IV 导波调制器和开关:光调制器中使用的物理效应:电光效应、声光效应和磁光效应。波导调制器和开关。单元 V 半导体激光器和探测器:激光二极管。分布式反馈激光器。集成光学探测器。单元 VI 集成光学的最新进展:导波设备和应用的最新技术,例如光子开关、可调谐激光二极管、光学集成电路。文本/参考文献 1. T Tamir,《导波光电子学》,Springer-Verlag,1990 年 2. R Sysm 和 J Cozens,《光导波和设备》,McGraw-Hill,1993 年
晶体材料、石榴石或掺杂稀土的顺磁玻璃,因此不适合大面积和体积成像。[4] 氮空位 (NV) 中心对磁场具有高灵敏度(单个 NV 中心的灵敏度约为 1 nT Hz −1/2 量级),[5] 但 NV 的光学截面较弱,需要高分辨率检测其发射波长,并且校准困难。[6] 磁成像应用将受益于生物相容性材料(如分子或纳米颗粒)内更强的光磁相互作用,这些材料可以直接掺入样品或生物测定中。[7] 理想情况下,用于磁成像的纳米材料还能够进行高分辨率成像和在高光子通量下操作,甚至可能在微激光器中实现,其明亮的发射和高光谱灵敏度为以细胞分辨率监测各种生理参数创造了新的机会。 [8] 荧光或电致发光材料中的新光磁效应可用于调制激光,甚至可能在光调制器中找到新的应用,而光调制器目前依赖于弱热效应或电光效应。鸟类对地球磁场敏感性的解释为传统磁光材料提供了一种替代品。最近的研究表明,鸟类能够利用其视网膜中电子相互作用的磁敏感性来适应地球磁场。[9,10] 鸟类视网膜中蛋白质的光激发会产生自由基(不成对电子)中间态,然后这些中间态与自旋为 1 的激子(电子-空穴对)相互作用,后者也称为三重态激子。为了解这些相互作用的磁依赖性基础,考虑一个不对称分子,对于该分子,即使在没有磁场的情况下,自旋为 1 的激子的三个三重态也会在能量上分裂。通常,在没有显著的自旋轨道耦合的情况下,这种零场分裂小于约 10 μ eV。[11] 因此,一个数量级为 10 μ eV μ B − 1 ( ≈ 0.2 T) 的外部磁场(其中 μ B 是玻尔磁子)可以通过塞曼效应重新排序三重态,从而调节它们在自旋相关相互作用中的参与。对于没有零场分裂的未配对电子,磁场灵敏度通常更高。因此,三重态-三重态和三重态-电荷相互作用都可以经历磁场调制。鉴于其