主席: Monica Blank,通信和电力工业 David Abe,国防高级研究计划局 Natanael Ayllon,欧洲空间局 John Booske,威斯康星大学 EunMi Choi,联合国教科文组织 Subrata Kumar Datta,微波管研究与发展中心 杜超海,北京大学 冯金军,北京真空电子研究所 Diana Gamzina,SLAC 国家加速器实验室 Gerd Gantenbein,卡尔斯鲁厄研究中心 Dan Goebel,美国国家航空航天局喷气推进实验室 Yubin Gong,中国电子科技大学 Jin-Won Han,美国国家航空航天局艾姆斯中心 John Jelonnek,卡尔斯鲁厄理工学院 Colin Joye,海军研究实验室 Baruch Levush,海军研究实验室 Jirun Luo,中国科学院 Neville Luhmann,加州大学戴维斯分校 Kartikeyan Machavaram,印度理工学院Roorkee Rudolphe Marchesin,泰雷兹电子设备公司 William Menninger,Stellant Felix Mentgen,欧洲空间局 Claudio Paoloni,英国兰卡斯特大学 William Putnam,加州大学戴维斯分校 Jagadishwar Sirigiri,Bridge12 科技公司 Jack Tucek,诺斯罗普·格鲁曼公司 Manfred Thumm,卡尔斯鲁厄理工学院 Richard True,L-3 通信公司,电子设备部门
能源部是根据 1992 年 12 月 9 日第 7638 号共和国法案成立的,“该法案成立了能源部,合理化与能源有关的政府机构的组织和职能,并用于其他目的。”这项法律,也称为 1992 年能源部法案,是为了应对 20 世纪 80 年代末困扰该国的最严重的电力危机。随着这项法律的颁布,能源部成为“政府的中央协调机构和内阁级能源政策和计划实施的倡导者”。能源部由一名部长、几名副部长和几名助理部长领导。该部由六 (6) 个局组成,即能源资源和发展局 (ERDB)、可再生能源管理局 (REMB)、能源利用和管理局 (EUMB)、石油工业管理局 (OIMB)、能源政策和规划局 (EPPB) 和电力工业管理局 (EPIMB)。同时,五 (5) 个支持服务部门分别是信息技术和管理服务、法律服务、金融服务、行政服务和能源研究和测试实验室服务。能源部还在乌达内塔、邦阿西楠 (吕宋)、宿务市 (维萨亚斯) 和达沃市 (棉兰老) 设有三 (3) 个实地办事处。秘书办公室直属办公室包括投资促进办公室、消费者福利和保护办公室、公共事务办公室和内部审计司。该部门的直属机构包括菲律宾国家石油公司 (PNOC) 及其子公司、PNOC - 勘探公司 (EC)、PNOC - 可再生能源公司 (RC)、国家电力公司 (NPC)、国家电气化局 (NEA)、电力部门资产负债管理公司 (PSALM)、国家输电公司 (TransCo) 和菲律宾电力市场公司 (PEMC)。
1. 引言 目前,电能存储系统 (EESS) 被广泛用于解决电力工业的各种问题。近几十年来,储能技术的密集发展导致了具有特性 (功率、能量强度、效率系数、速度) 的 EESS 的诞生,这些特性 (功率、能量强度、效率系数、速度) 使项目能够以技术和经济效率实施。2017 年,俄罗斯联邦能源部批准了《俄罗斯联邦电力存储系统市场发展构想》[1]。此外,能源计划还指出了在俄罗斯联邦能源领域引入储能系统的具体任务,该计划是国家技术倡议的长期综合计划的一部分,旨在到 2035 年形成全新的市场并为俄罗斯在全球技术领导地位创造条件 [2]。现代快速 EESS 是一种全新的能源电力设备,旨在与电力系统进行受控的能量交换,以组织所需的模式或控制动态过程。EESS 能够根据任何给定的算法几乎立即控制有功功率平衡。根据给定的任务,EESS 可用作无功功率补偿装置、高次谐波有源滤波器以及三相网络不对称补偿手段。由于 EESS 技术的新颖性,其在俄罗斯电力工业实践中的开发和实施始于相对较小的额定功率和能量强度。俄罗斯联邦的自主能源系统中有许多 EESS 项目可供实施,这些项目具有较高的经济和技术效率。受控能量交换过程中的功率变化速度由 EESS 的功能目的决定。目前最相关的储能设备类型是:锂离子电池和超级电容器。第一种类型对于相对较慢的过程最有效,而第二种类型对于较慢的过程最有效。
精度类(WESM-MSP)指定为仪器变压器分配的误差在规定的使用条件下保留在指定限制范围内。法案(WESM规则)是指共和国法。9136也称为“ 2001年的《电力工业改革法》”。(WESM-DRM)是指《共和国法》号9136也称为《电力行业改革法》(EPIRA),可能会不时被主管当局替换或修改。(WESM-MSM)是指共和国法案9136,也称为2001年的《电力行业改革法》(EPIRA)。(WESM-RCM)颁布为第9136号共和国法。(WESM-TCMM)是指《共和国法》号9136也称为《电力行业改革法》(EPIRA),因为它们可能不时由主管当局发行或修改。主动能量(WESM规则)在时间(WH)或其倍数中测量的活动能力相对于时间的积分。除非另有资格,否则“能量”一词是指主动能量。实际暴露(WESM规则)WESM成员必须在到期日支付的总义务总额。充分性(WESM-SSRG)电力系统始终考虑始终提供客户的总电气需求和能源需求的能力,并考虑到系统元素的计划外的未定规划中的预期。管理价格(WESM规则)在市场暂停和市场干预期间,市场运营商向交易参与者施加的价格用于定居点,该价格是根据市场运营商开发和发布的方法并由ERC批准的。(WESM-MSM)是指市场运营商在市场停赛和干预期间向交易参与者施加的价格,用于定居点,这些价格根据市场运营商开发和发布的方法,并由ERC批准。
UDC 621.317.727.1 https://doi.org/10.20998/2074-272X.2025.1.09 YO Haran,YO Trotsenko,OR Protsenko,MM Dixit 寄生电容对高压分压器刻度转换精度的影响目的。这项工作的目的是确定寄生电容对高压分压器刻度转换精度的影响。分析减少这种影响的可能性是高压测量的一个紧迫问题,特别是在输入电压的高频范围内。方法。在 100 Hz 至 1 MHz 范围内的正弦交流电条件下,在 QUCS 电路模拟器软件中对分压器等效电路进行了数学建模,考虑了寄生电容和电感。利用FEMM软件,采用有限元法模拟分压器高压臂采用电容分级绝缘模块中电容电流的密度分布。结果。计算结果表明,寄生电容电流百分比随屏蔽盘外半径与它们之间距离的比值而呈指数下降。但即使屏蔽盘外半径为3m左右,电容电流仍然占分压器测量电路中流动总电流的1%左右。建议不增加外半径,而是在屏蔽盘之间采用高压电容分级绝缘。结果发现,当寄生电容值变化时,大范围电压变换的误差稳定,并建议用同类型的高压模块来制造分压器的高压臂。独创性。获得了分压器尺度变换精度对其高压臂结构元件几何参数比值的依赖关系的建模结果。提出的解决方案是改变分压器高压臂的设计,这显著降低了其尺度变换误差对接地表面上结构元件寄生电容的显著变化的依赖性。实用价值。分压器高压臂特性的数学建模结果使得可以设计相同类型的高压模块用于批量生产,以便现场组装任何标称电压的宽带分压器,从而有可能集成到智能电网系统中。参考文献23,表1,图8。关键词:高压分压器、寄生电容、尺度变换精度。 В роботі розглянуто вплив будови високовольтного плеча подільника напруги на його характеристики.为了确保减少结构元件的寄生电容对有源部分的集总元件和外部物体的影响,已经研究了屏蔽集总元件的方法。通过数学建模确定了高压臂结构元件几何参数配比对高频区电压缩放误差的影响。根据建模结果,选择了利用多层电容式绝缘对分压器有源部分的集总元件进行屏蔽的方法,保证了宽频率范围内缩放电压转换误差的稳定性。高压臂结构的拟议变化使我们能够切换到分压器的模块化结构并进行其批量生产。圣经。 23、表。 1,图。 8. 关键词:高压分压器,寄生电容,刻度转换精度。问题定义。高压分压器是微电子和高压测试和研究实验室中常见的大型电压转换器。然而,这些电气设备在电力工业中,特别是在高压电气设备中没有得到广泛的应用,因为它们的结构不允许摆脱许多缺点,这些缺点使它们作为宽带大型高压转换器集成到模拟或数字变电站中变得复杂[1]。例如,在实验室条件下,对于高压分压器,在很宽的频率范围内获得了0.1量级的大范围电压转换误差,但是这种分压器结构复杂,不适用于风荷载、降水和温度变化。在开放式开关设备中,分压器附近存在不同电位(或接地)的物体会严重影响其高压臂的寄生电容。此类物体上的寄生电容会显著影响高频下大规模电压转换的精度。此外,高压臂的集总元件的复电阻的温度依赖性会影响分压器的比例因子。此外,根据客户的特定任务生产高压分压器使建立此类设备的统一批量生产系统变得复杂。这限制了显著提高电能质量指标的测定、高压设施过程的安全性和自动化程度的可能性。由于这些和其他原因,高压分压器尚未被用作大规模高压根据建模结果,选择了利用多层电容式绝缘对分压器有源部分的集总元件进行屏蔽的方法,保证了宽频率范围内缩放电压转换误差的稳定性。高压臂结构的拟议变化使我们能够切换到分压器的模块化结构并进行其批量生产。圣经。 23、表。 1,图。 8. 关键词:高压分压器,寄生电容,刻度转换精度。问题定义。高压分压器是微电子和高压测试和研究实验室中常见的大型电压转换器。然而,这些电气设备在电力工业中,特别是在高压电气设备中没有得到广泛的应用,因为它们的结构不允许摆脱许多缺点,这些缺点使它们作为宽带大型高压转换器集成到模拟或数字变电站中变得复杂[1]。例如,在实验室条件下,对于高压分压器,在很宽的频率范围内获得了0.1量级的大范围电压转换误差,但是这种分压器结构复杂,不适用于风荷载、降水和温度变化。在开放式开关设备中,分压器附近存在不同电位(或接地)的物体会严重影响其高压臂的寄生电容。此类物体上的寄生电容会显著影响高频下大规模电压转换的精度。此外,高压臂的集总元件的复电阻的温度依赖性会影响分压器的比例因子。此外,根据客户的特定任务生产高压分压器使建立此类设备的统一批量生产系统变得复杂。这限制了显著提高电能质量指标的测定、高压设施过程的安全性和自动化程度的可能性。由于这些和其他原因,高压分压器尚未被用作大规模高压根据建模结果,选择了利用多层电容式绝缘对分压器有源部分的集总元件进行屏蔽的方法,保证了宽频率范围内缩放电压转换误差的稳定性。高压臂结构的拟议变化使我们能够切换到分压器的模块化结构并进行其批量生产。圣经。 23、表。 1,图。 8. 关键词:高压分压器,寄生电容,刻度转换精度。问题定义。高压分压器是微电子和高压测试和研究实验室中常见的大型电压转换器。然而,这些电气设备在电力工业中,特别是在高压电气设备中没有得到广泛的应用,因为它们的结构不允许摆脱许多缺点,这些缺点使它们作为宽带大型高压转换器集成到模拟或数字变电站中变得复杂[1]。例如,在实验室条件下,对于高压分压器,在很宽的频率范围内获得了0.1量级的大范围电压转换误差,但是这种分压器结构复杂,不适用于风荷载、降水和温度变化。在开放式开关设备中,分压器附近存在不同电位(或接地)的物体会严重影响其高压臂的寄生电容。此类物体上的寄生电容会显著影响高频下大规模电压转换的精度。此外,高压臂的集总元件的复电阻的温度依赖性会影响分压器的比例因子。此外,根据客户的特定任务生产高压分压器使建立此类设备的统一批量生产系统变得复杂。这限制了显著提高电能质量指标的测定、高压设施过程的安全性和自动化程度的可能性。由于这些和其他原因,高压分压器尚未被用作大规模高压这些电气设备并未广泛应用于电力工业,特别是高压电气设备,因为它们的结构存在许多缺点,使得它们难以作为宽带大规模高压转换器集成到模拟或数字变电站中 [1]。例如,在实验室条件下,高压分压器在很宽频率范围内的大规模电压转换误差约为 0.1,但这种分压器的结构复杂,不适用于风荷载、降水和温度变化。在开放式开关设备中,分压器附近存在不同电位(或接地)的物体,会显著影响其高压臂的寄生电容。这些物体上的寄生电容会显著影响高频大规模电压转换的精度。此外,高压臂集总元件复电阻的温度依赖性会影响分压器的比例因子。此外,为客户的特定任务生产高压分配器使建立这种设备的统一批量生产系统变得复杂。这限制了显著改善电能质量指标的确定、高压设施的安全性和自动化的可能性。由于这些原因和其他原因,高压分配器尚未被用作大规模高压设备。这些电气设备并未广泛应用于电力工业,特别是高压电气设备,因为它们的结构存在许多缺点,使得它们难以作为宽带大规模高压转换器集成到模拟或数字变电站中 [1]。例如,在实验室条件下,高压分压器在很宽频率范围内的大规模电压转换误差约为 0.1,但这种分压器的结构复杂,不适用于风荷载、降水和温度变化。在开放式开关设备中,分压器附近存在不同电位(或接地)的物体,会显著影响其高压臂的寄生电容。这些物体上的寄生电容会显著影响高频大规模电压转换的精度。此外,高压臂集总元件复电阻的温度依赖性会影响分压器的比例因子。此外,为客户的特定任务生产高压分配器使建立这种设备的统一批量生产系统变得复杂。这限制了显著改善电能质量指标的确定、高压设施的安全性和自动化的可能性。由于这些原因和其他原因,高压分配器尚未被用作大规模高压设备。高压分压器尚未被用作大规模高压高压分压器尚未被用作大规模高压
目标:1. 批准并实施洪都拉斯地热能促进国家政策。 时间范围:2030 目标背景:洪都拉斯大西洋沿岸地区的热能表现高于 80ºC,因此直接利用地热能的可能性很高。 有《电力工业一般法》和《可再生资源发电促进法》及其改革等法律规范与可再生能源发电(这里指地热发电)相关的活动。 因此,批准和实施该政策对于建立金融机制、推动和发展研究和技术、制定法规和规章制度以及地热能社会化都很重要。 六个高焓场的总潜力在 120MW 之间,超过 200 个地点位于输电网络和生产区附近 目标:2. 将新能源和可再生能源的可持续发电项目纳入电力市场。时间范围:2030 目标背景:该国的主要目标之一是实现发电矩阵多样化,集中精力实现可再生能源利用率更高的发电矩阵,鼓励使用国家资源,从而提高该国的能源独立指数。为此,有几项国家举措旨在提高可再生资源在发电矩阵中的参与度,其中包括:政府战略计划、国家愿景法和国家计划,以及国家脱碳计划(正在进行中)。除了这些举措之外,增加可再生资源在发电中的份额有利于减少温室气体排放,也有利于国家应对气候变化。目标:3. 推动一项投资计划,更新和扩大国家互联系统 时间范围:2030 年 目标背景:投资输电系统非常重要,因为对于脱碳目的而言,如果这些电厂生产的能源不能运输到该国其他地区使用,以取代温室气体排放高的其他技术,那么拥有大量可再生能源技术的装机容量也是没有用的。☐ 7.3. 到 2030 年,全球二氧化碳排放量将翻一番
COMP 549 受大脑启发的人工智能 3 P - MATH 222、MATH 223 和 MATH 323;或同等学历。 COMP 551*** 应用机器学习 4 P - MATH 323 或 ECSE 205 或同等课程 COMP 559 计算机动画基础 4 P - MATH 222、MATH 223、COMP 206、COMP 250 COMP 562 机器学习理论 4 P - MATH 462 或 COMP 451 或(COMP 551、MATH 222、MATH 223 和 MATH 324)或 ECSE 551。ECSE 310 计算热力学 3 P - ECSE 200、ECSE 205、ECSE 222 ECSE 325 数字系统 3 P - ECSE 324 ECSE 405 天线 3 P - ECSE 206、ECSE 354 ECSE 412 离散时间信号处理 3 P - ECSE 206 ECSE 415介绍。计算机视觉 3 P - ECSE 205,(ECSE 206 或 ECSE 316)ECSE 420 并行计算 3 P - ECSE 427 ECSE 421 嵌入式系统 3 P - ECSE 324 ECSE 422 容错计算 3 P - ECSE 324 和(ECSE 250 或 COMP 250)ECSE 423 光子学基础 3 P - ECSE 354 ECSE 424 人机交互 3 P - (ECSE 324 和 ECSE 250)或(ECSE 324 和 COMP 250)或(COMP 251 和 COMP 273)ECSE 425 计算机架构 3 P - ECSE 324 ECSE 427 操作系统 3 P - (ECSE 324 或 COMP 273)ECSE 430光子器件与系统 3 P - ECSE 354,MIME 262 ECSE 431 VLSI CAD 简介。 3 P - ECSE 324、ECSE 331 ECSE 435 混合信号测试技术 3 P - ECSE 206、ECSE 335 ECSE 436 信号处理硬件 3 P - ECSE 206、ECSE 324、ECSE 325 ECSE 446 真实图像合成 3 P - (ECSE 205 和 ECSE 250)或(ECSE 202 和 ECSE 205 和 COMP 250)ECSE 450 电磁兼容性 3 P - ECSE 222、ECSE 331、(ECSE 353 或 ECSE 354)ECSE 451 EM 传输和辐射 3 P - ECSE 354 ECSE 460 电气设备 3 P - ECSE 464 ECSE 463 * 电力发电 3 P - (ECSE 362 或ECSE 461) ECSE 464 电力系统分析 3 P - ECSE 362 ECSE 465** 电力电子系统 3 P - ECSE 331、ECSE 362 ECSE 466 配电系统 3 P - ECSE 362 ECSE 467 电力通信 3 P - ECSE 464 ECSE 468 电力工业 3 P - ECSE 362 ECSE 469 电力保护 3 P - ECSE 464 ECSE 472 电路仿真和建模基础 3 P - ECSE 206、ECSE 331 ECSE 500 系统数学基础 3 ECSE 501 线性系统 3 C - ECSE 500 或获得讲师许可 ECSE 507 优化与最优控制 3 P - (ECSE 343 或 ECSE 543 或 ECSE 501 或 COMP 540 或获得讲师许可)ECSE 508 多智能体系统 3 P - ECSE 205 或同等学历 ECSE 509 概率与随机信号 2 3 P - (ECSE 206 或 ECSE 316),ECSE 205 ECSE 510 随机系统的过滤与预测 3 P - ECSE 500,ECSE 509 或同等学历 ECSE 516 非线性和混合控制系统 3 P - ECSE 500,ECSE 501 或同等学历 ECSE 519 半导体纳米结构与纳米光子器件 3 P - ECSE 354,(ECSE 433 或 ECSE 533) ECSE 521 数字通信 1 3 P - ECSE 408;C- ECSE 509 ECSE 526 人工智能 3 P - ECSE 324 ECSE 532 计算机图形学 4 P - ECSE 324 ECSE 543 电气工程中的数值方法 3 P - ECSE 324、ECSE 331、ECSE 251 ECSE 544 计算摄影 4 P - ECSE 205 和(ECSE 206 或 ECSE 316)ECSE 551*** 工程师机器学习 4 P - (ECSE 250 或 COMP 250)和(ECSE 205 或 MATH 323); C- ECSE 343 或 ECSE 543 或 MATH 247 ECSE 552 深度学习 4 P - (ECSE 551 或 COMP 551) ECSE 554 应用机器人 4 P - ECSE 205、COMP 206、ECSE 250 和(ECSE 343 或 MATH 247)或同等学历。 ECSE 556 网络生物学中的机器学习 4 ECSE 557 自主智能系统伦理学简介 3 P - (ECSE 202 或 ECSE 250 或 COMP 250)和(ECSE 205 或 MATH 323)或经讲师许可; C - COMP 451 或 COMP 551 或 ECSE 551 或经讲师许可
COMP 370 数据科学概论 3 P - COMP 206, COMP 250 或 ECSE 250 COMP 549 脑启发人工智能 3 P - MATH 222, MATH 223, MATH 323 COMP 551*** 应用机器学习 4 P - MATH 323 或 ECSE 205 或同等学历 COMP 559 计算机动画基础 4 P - MATH 222, MATH 223, COMP 206, COMP 250 COMP 562 机器学习理论 4 P - MATH 462 或 COMP 451 或(COMP 551, MATH 222, MATH 223, MATH 324)或 ECSE 551 ECSE 310 计算热力学 3 P - ECSE 200, ECSE 205, ECSE 222 ECSE 325 数字系统 3 P - ECSE 324 ECSE 405 天线 3 P - ECSE 206, ECSE 354 ECSE 412 离散时间信号处理 3 P - ECSE 206 ECSE 415 简介。计算机视觉 3 P - ECSE 205,(ECSE 206 或 ECSE 316)ECSE 420 并行计算 3 P - ECSE 427 ECSE 421 嵌入式系统 3 P - ECSE 324 ECSE 422 容错计算 3 P - ECSE 324 和(ECSE 250 或 COMP 250)ECSE 423 光子学基础 3 P - ECSE 354 ECSE 424 人机交互 3 P - (ECSE 324 和 ECSE 250)或(ECSE 324 和 COMP 250)或(COMP 251 和 COMP 273)ECSE 425 计算机架构 3 P - ECSE 324 ECSE 427 操作系统 3 P - (ECSE 324 或 COMP 273)ECSE 430光子器件与系统 3 P - ECSE 354,MIME 262 ECSE 431 VLSI CAD 简介。 3 P - ECSE 324、ECSE 331 ECSE 435 混合信号测试技术 3 P - ECSE 206、ECSE 335 ECSE 436 信号处理硬件 3 P - ECSE 206、ECSE 324、ECSE 325 ECSE 446 真实图像合成 3 P - (ECSE 205 和 ECSE 250)或(ECSE 202 和 ECSE 205 和 COMP 250)ECSE 450 电磁兼容性 3 P - ECSE 222、ECSE 331、(ECSE 353 或 ECSE 354)ECSE 451 EM 传输和辐射 3 P - ECSE 354 ECSE 460 电气设备 3 P - ECSE 464 ECSE 463 * 电力发电 3 P - (ECSE 362 或ECSE 461) ECSE 464 电力系统分析 3 P - ECSE 362 ECSE 465** 电力电子系统 3 P - ECSE 331、ECSE 362 ECSE 466 配电系统 3 P - ECSE 362 ECSE 467 电力通信 3 P - ECSE 464 ECSE 468 电力工业 3 P - ECSE 362 ECSE 469 电力保护 3 P - ECSE 464 ECSE 472 电路仿真和建模基础知识 3 P - ECSE 206、ECSE 331; ECSE 597 不能参加 ECSE 500 系统数学基础 3 ECSE 501 线性系统 3 C - ECSE 500 或获得讲师许可 ECSE 507 优化与最优控制 3 P -(ECSE 343 或 ECSE 543 或 ECSE 501 或 COMP 540 或 MATH 247 或获得讲师许可) ECSE 508 多智能体系统 3 P - ECSE 205 或同等学历 ECSE 509 概率与随机信号 2 3 P -(ECSE 206 或 ECSE 316),ECSE 205 ECSE 510 随机系统的过滤与预测 3 P - ECSE 500、ECSE 509 或同等学历 ECSE 516 非线性和混合控制系统 3 P - ECSE 500、ECSE 501 或同等学历 ECSE 519 半导体纳米结构与纳米光子器件 3 P - ECSE 354,(ECSE 433 或 ECSE 533) ECSE 521 数字通信 1 3 P - ECSE 408 或 ECSE 511;C- ECSE 509 ECSE 526 人工智能 3 P - ECSE 324 ECSE 532 计算机图形学 4 P - ECSE 324 ECSE 534 模拟微电子学 3 P - ECSE 335 ECSE 543 电气工程中的数值方法 3 P - ECSE 324、ECSE 331、ECSE 251 ECSE 544 计算摄影 4 P - ECSE 205、ECSE 206 ECSE 551*** 工程师机器学习 4 P - (ECSE 250 或 COMP 250) 和 (ECSE 205 或 MATH 323); C- ECSE 343 或 ECSE 543 或 MATH 247 ECSE 552 深度学习 4 P - (ECSE 551 或 COMP 551) ECSE 554 应用机器人 4 P - ECSE 205、COMP 206、ECSE 250、(ECSE 343 或 MATH 247)或同等学历 ECSE 556 网络生物学中的机器学习 4 P - 讲师许可 ECSE 562* 低碳发电工程 4 P - (ECSE 362 或 ECSE 461) ECSE 563 电力系统运行与规划 3 P - ECSE 362 ECSE 565** 电力电子学概论 3 P - ECSE 335、ECSE 362 ECSE 575 异构集成系统 3 P - ECSE 335 或讲师许可 PHYS 346 专业 量子物理学 3 P - PHYS 230、PHYS 232 或 PHYS 251 PHYS 434 光学 3 C - PHYS 342 或 PHYS 352,或经导师许可