摘要 — 快速可靠的优化轨道转移计算方法对于初始阶段的项目至关重要。它们可以对推进子系统(卫星设计的主要组件之一)进行初步的、现实的规模估算。这篇论文由 ReOrbit Oy 完成,提出了一种最短时间的最优轨道,用于将微型卫星从 GTO 轨道提升到 GEO,假设通过电力推进连续发射。根据此模拟得出的 ∆ v 要求,选择合适的电力推进系统,并详细说明其配置在燃料和推力要求方面的设计。这是通过考虑轨道提升带来的主要贡献,以及 10 年寿命期间每天进行两次的轨道机动所产生的附加物,如位置保持修正和反作用轮去饱和。优化方法是低推力轨道机动的直接-间接混合方法,采用庞特里亚金最小原理将其转录为非线性规划问题。利用 Lyapunov 控制理论获得启动优化器所需的初始猜测。实施轨道平均技术,能够在优化过程中快速计算多条轨迹。动态模型包括 J 2 纬向谐波、太阳辐射压力、太阳和月亮的第三体效应以及高达 1500 公里的大气阻力等干扰。利用圆柱形阴影模型评估日食条件,因为在地球阴影中,太阳能电力推进会经历零推力期。电力推进系统配置是通过权衡研究和不同供应商之间的比较来确定的。选定的方案包括 4 个氙气推进器,配备互补的电源处理单元和推进剂管理系统,总转移时间不到 4 个月。通过在 GEO 中改变推进器的配置,转移轨迹和在轨机动都使用相同的推进系统。
空间电力推进 (EP) 技术的推力致密化对于实现未来雄心勃勃的太空任务和探索(例如载人火星任务)必不可少。EP 致密化主要受限于推进器材料承受极端等离子体条件的能力。本研究调查了最大化电流增强的相互关联的动力学、随后的溅射和电弧腐蚀挑战,以及一类有前途的新型先进材料——体积复合材料 (VCM) 对空间电力推进系统的影响。与标准材料相比,VCM 表现出增强的管理高水平等离子体能量和电流的能力,这主要归功于几何捕获和等离子体注入等原理的综合优势。研究了 VCM 中的能量管理和溅射剂传输机制,以深入了解最佳 VCM 几何形状,并探索利用先进增材制造方法的潜力。还通过耦合计算和实验分析确定了 VCM 电弧响应和有利的升华腐蚀特性。这一发现强调了 VCM 具有彻底改变与 EP 相关的面向等离子体应用的材料设计的潜力,为更耐用、更高效的推进系统铺平了道路。
正如我们在科幻电影中不断看到的使用离子或电力推进进行星际太空旅行的情况一样,即使不是星际科学家也已经开始将这项技术视为星际技术的一种选择,它是高效燃料使用和电力的完美结合,它比任何其他技术都非常便宜和快捷。在物理学中,离子推进是航天器使用的一种电力推进。与任何传统的火箭推进方法一样,离子推进依赖于牛顿第三定律:每个作用都有一个相等和相反的反作用。典型的火箭发动机使用内部机制加速某种类型的废气远离火箭。由于这构成了废气上的力,发动机会受到相反方向的力。至关重要的是,推进需要损失质量
摘要:人们对太空探索重新产生兴趣,这导致了有关先进太空推进系统(包括高效电力推进系统)的研究力度加大。尽管这些系统几十年前就已经在太空中进行了测试,目前正应用于各种太空平台和数千颗卫星,但它们在轨道和深空应用中的潜力尚未得到充分发挥。空间电力推进的一个特点是该技术中使用的物理过程种类繁多,这在许多其他类型的运输用推进系统(例如飞机或汽车使用的推进系统)中并不常见。各种物理过程和机制是不同电力推进技术的基础,应将它们结合起来,以推动未来空间电力推进系统科学技术的发展。这篇评论文章简要强调了空间电力推进的这一特点,并概述了这种多样性带来的一些挑战和机遇。
摘要:随着多电/全电飞机的发展,特别是混合电推进或电力推进飞机的进步,在电力需求不断增加、散热能力受限的情况下,必须解决飞机能量系统设计和运行优化的问题。本文概述了飞机动力系统架构优化和能量管理系统的研究现状。本文从多能源形式的角度回顾了飞机动力系统架构优化的基本设计方法。可再生能源如光伏电池和燃料电池被融入机载动力系统中,由于其不确定性和功率响应速度,也使得飞机能量优化分配问题变得复杂。本文分析并介绍了飞机动力系统优化、评估技术和动态管理控制方法的基本思想和研究进展。总结了飞机能源系统架构工程设计优化方法的发展趋势,并从重量、可靠性、安全性、效率、可再生能源特性等约束条件下的多目标优化中得出。根据飞机的不同功率流关系,对基于能源效率和电能质量的成本函数进行了评论和讨论。本文将不同飞机微电网架构的动态控制策略与其他方法进行了比较。回顾了一些电力推进飞机和多电飞机的综合能源管理优化策略或方法。分析了飞机能量优化技术的数学考虑和表达,并比较了一些特点和解决方法。结合一些参考文献,讨论了热能和电能耦合关系研究领域以及飞机电力系统的电能质量和稳定性。最后,本文还对未来机场微电网与电力推进飞机动力系统的能量交互优化问题进行了探讨和预测。本文基于EMS和架构优化的最新技术发展,提出业界对飞机动力系统电气化的常识和未来趋势,并提出在电气化飞机推进系统架构选择中应遵循的EMS+TMS+PHM
增加了人们对电动汽车的兴趣。然而,评估哪一个是电动汽车部件的最佳选择通常需要进行一系列实验测试,这可能非常昂贵,而且不像工程项目那样充分。因此,本文提出了一种基于 RFLP 方法的方法,该方法可以帮助设计人员在电力推进系统的预设计过程中选择电动汽车动力传动系统部件的最佳配置,从而降低与实验室测试台或真实电动汽车上的物理实验相关的成本。本文的目的是提供一种计算工具,可以虚拟模拟设计的电力推进系统的行为,从而有助于解决电池供电汽车领域最常见的问题。本文考虑的案例研究是电动踏板车的动力传动系统。这项工作的第一步是定义模拟模型,以模拟动力传动系统的车辆性能和能量消耗。第二步,这些模型通过安装在意大利国家研究委员会 Istituto Motori 实验室的物理电力传动系统实验进行参数化和验证。评估模型的验证允许对各种电力传动系统的不同替代配置进行模拟测试
特点 • 技术 - 尺寸:长 99 米;直径:8.8 米 - 排水量:水面 4,700 吨 - 速度:水下约 25 节 - 推进力:核能。推进涡轮和电力推进马达运行 • 多用途武器 - F21 重型鱼雷(反舰和反潜) - MdCN 巡航导弹(对陆行动) - Exocet SM 39 导弹(反水面)