摘要:电力空间推进是一项在不断增加的航天器上采用的技术。虽然其应用领域的当前重点是电信卫星和太空探索任务,但现在正在讨论一些新想法,这些想法走得更远,应用推进器羽流粒子流将动量传递给目标,例如空间碎片物体甚至小行星。在这些潜在场景中,推进器光束撞击远处的物体,随后改变它们的飞行路径。到目前为止尚未系统研究的一个方面是推进光束中的带电粒子与太空中存在的磁场的相互作用。这种相互作用可能导致粒子流偏转,从而影响瞄准策略。在本文中,介绍了与电力推进推进器羽流和磁场相互作用相关的基本考虑因素。针对这些问题,德国航空航天中心在哥廷根的电推进器高真空羽流测试设施(STG-ET)进行了实验,利用栅状离子推进器、RIT10/37 和亥姆霍兹线圈产生不同场强的磁场。可以检测到由类似地球磁场强度的磁场引起的 RIT 离子束的束偏转。
开放式船舶交通的解化绝绝对只能通过替代能源载体实现。除了合成燃料之外,电池电力推进是一种备受关注的措施,尤其是对于较小的船只和短通道。但是,对定量船舶特性尚无共识,可以应用电池而不是基于燃料的解决方案。因此,评估了45个具有一系列运输能力的容器的电池推进系统的局限性。最常见的海洋电池技术通过将其性能与最先进的燃烧引擎进行比较,从经济和环境中评估。监控船舶的质量和数量限制,除了资本和运营费用外,还量化了新兴的机会成本。发现电池电气推进系统的应用不受容器尺寸的限制,而是主要受操作的通道长度的限制。尽管在技术上最多可实现15,000公里的距离,但经济上的局限性实际上将应用领域降低到最多10,000公里。但是,当将电池解决方案与常规柴油燃烧发动机进行比较时,只有在包括碳税和预测乐观的电池开发时,才能观察到高达2500公里的经济竞争力。
摘要 本文介绍了一项关于旋转磁场 (RMF) 推进器低推力效率的实验研究。该技术成熟度较低,但可能成为使用替代推进剂实现高功率太空推进的候选技术。对 5 kW 级 RMF 推进器进行了直接推力台架测量,结果显示推力效率为 0.41 ± 0.04%,比冲为 292 ± 11 s - RMF 推进器运行的典型值。使用一套远场探测器为 RMF 推进器性能的现象学效率模型提供信息,该模型考虑了发散、功率耦合、质量利用率和等离子体/加速效率。结果发现等离子体效率处于临界低值,为 6.4 ± 1.0%。这表明 RMF 天线耦合到等离子体的大部分能量在转换为推进器光束中的定向动能之前就丢失了。为了确定这些损失的来源,使用三重朗缪尔探针对内部等离子体特性进行了时间分辨测量。发现碰撞激发辐射和壁面损失是两个主要的损失过程。与其他电力推进结构相比,该装置表现出异常高的等离子体密度(> 10 19 m − 3),这可以解释这一趋势。根据效率分析的结果,讨论了探测技术的局限性以及改进 RMF 推进器性能的策略。
•在多个领域的38个月的广泛和深度航空航天研究经验:高焓/高富度性高超音速计算流体动力学,轻粒子相互作用,模拟和数值算法的开发,光学诊断,磁性水解动力学,磁性水解动力学,铁水平和静脉体的实质性comporation•包括实质性的实质性范围,包括一定的经验,包括范围的经验。使用Python,C ++和MATLAB•研究生课程包括航天器工程,空间等离子体物理学,电力推进,空气呼吸推进,空气热化学,部分差分方程的数值方法,计算流体的数值,计算流体动力学,动态流动性,湍流和最佳机制4.工程学4.工程学4.工程学3. GPA,麦格纳(Magna cum Laude)航空航天工程理学学士学位,具有工程荣誉,得克萨斯州A&M大学化学和数学的未成年人,2022年12月,学院站 - 学院站,在17岁时完成3.9/4.0研究生GPA(现代)GPA(现代),航空工程工程学计划。佐治亚州技术研究所技术技能:
推进意味着推动或驱动物体向前。推进系统由机械动力源和将机械动力转换为推进力的装置组成。航天器推进用于改变航天器和人造卫星的速度。当今大多数航天器都是通过将反作用物质加热到高温并以极高的速度从航天器后部排出来推进的。离子产生的推力称为离子推进。离子推进器或离子驱动器是一种用于航天器推进的电力推进形式。它通过用电加速离子来产生推力。产生的推力很低是可以理解的,这种低推力使离子推进器非常适合太空推进,而不适合将航天器或其同类发射到大气层。离子推进器可分为静电推进器和电磁推进器。离子推进器即使没有运动部件也能产生气流。美国宇航局大规模使用这种看似不可能的装置的一个版本来推进他们的太空探测器。该系统相对于其他系统的优势在于,它只需要电源即可启动,几乎牢不可破。该设备使用的 12000V 电压只能点燃一张薄纸。尽管如此,它不会产生气流,因为它内部没有活动部件。更值得注意的是,它可以用非常容易获得的材料建造,例如管件、钉子和霓虹灯变压器。该设备的部分功能只需高压电源的两极即可实现。
民用航空运输的未来正在迅速变化,应对严重的问题和机遇,解决方案空间具有真正重大的社会和广泛的商业和工业层面影响。未来要解决的首要问题包括排放/气候/能源、道路拥堵/基础设施成本、向远程一切的转变,包括远程旅行、现场打印某些商品的副空运货物、在通往自治的道路上快速发展的自动化转变、电子的普遍性和脆弱性、现有机场的容量有限、声学限制、安全性、可负担性和不断增加的延误(空中交通管制 (ATC)、安全、枢纽/辐射、地面交通)。预计民用航空运输复兴将由大量先进到革命性的技术推动,包括可再生/“绿色”/越来越便宜的能源、电力推进、纳米材料和材料加工、印刷制造、人工智能 (AI)/自治、新兴的全球传感器网格、安全/可靠性实现以及弹性导航和通信。民用航空复兴的预期性质包括转向基本上无排放的飞行/驾驶飞机,包括私人飞机,后者从当地街道起飞,最终取代大部分地面交通和定期商业空中交通、自动驾驶汽车运行和空中交通管制、大型空中
我们已完成空中交通管理技术演示,为联邦航空管理局提供了轨迹管理工具,并支持实施下一代空中交通管理系统。我们正准备开始 X-59 的飞行,以确定社区对陆上超音速噪音的接受程度。我们正在为大型兆瓦级电力推进系统的飞行演示做准备。我们完成了设计和认证轻型复合材料结构的改进能力的演示,目前正在开发提高复合材料结构制造速度的技术。我们刚刚签订了一份合作协议,以建立一种先进配置亚音速运输机的全尺寸演示,这种运输机基于十年来日益先进的研究传统,具有更高的空气动力学效率。我们正在为先进的空中机动系统开发新型空中交通管理能力,以我们在展示突破性的无人机系统交通管理能力方面取得的成功为基础。我们已经展示了强大的新软件验证技术,这些技术将加速复杂自动化系统的开发并确保其安全。我们正在开发预测安全管理的开创性创新,以确保航空系统的未来安全。我们正在激励和培养航空业的下一代多元化领导者,同时通过我们非常成功的大学创新项目支持符合该 SIP 的创新解决方案。等等。
摘要:本次演讲将介绍全球变暖、光伏建模、控制光伏微电网、新研究前沿、神经网络预测控制和深度学习的最新发现。随着微电子技术的最新进展,智能手机的内存和计算速度与 1969 年阿波罗登月时的计算机系统相同。目前,数字信号处理 (DSP) 提供高速数据处理、内存和速度,可以开发神经网络预测控制模型并实现对太阳能微电网的精确控制。演讲结束时将介绍深度学习算法及其对技术各个方面的影响。关于演讲者:Keyhani 博士是 IEEE 研究员,并于 1989 年、1999 年和 2003 年获得俄亥俄州立大学工程学院研究奖。1967 年至 1972 年,他曾在惠普公司、哥伦布南俄亥俄电气公司和 TRW 控制公司工作。从 1975 年到 1980 年,他担任德黑兰德黑兰理工学院的教授。目前,他是俄亥俄州立大学(位于俄亥俄州哥伦布)的电气和计算机工程教授。Keyhani 博士的研究活动主要集中在分布式能源系统中可再生和绿色能源的设计、控制和集成、电力电子系统的控制、先进的电力推进、电机建模、基于 DSP 的机电系统控制虚拟测试台、汽车系统、建模、参数估计和故障检测系统。他的研究工作得到了美国国家科学基金会、美国电力合作公司、德尔福汽车系统、Liebert 合作公司、通用汽车、福特汽车公司和 TRW 的支持。
VFS 很高兴地宣布,第 79 届年度论坛和技术展示计划于 2023 年 5 月 16 日至 18 日在棕榈滩县会议中心举行。第 79 届论坛是展示和讨论垂直飞行技术、发展和应用进步的绝佳机会。近 80 年来,该论坛一直是世界上规模最大、最重要的垂直飞行技术会议。这是唯一一个学者、政府研究人员和领导人、军事运营商和决策者以及行业工程师和高管齐聚一堂,学习、分享和努力推进垂直起降 (VTOL) 飞机和技术的活动。我们邀请全球垂直飞行社区参加第 79 届论坛,帮助塑造垂直飞行的未来。随着高保真建模和分析工具、自主性、先进制造、电动/混合电力推进以及其他技术和创新实现新功能,VTOL 技术正在迅速发展。随着美国军方未来垂直升力 (FVL) 计划的进展和扩展,下一代民用倾转旋翼机和复合材料在欧盟清洁天空 2 计划下成型,新型商用旋翼机即将获得认证,更多电动垂直起降飞机飞上天空,今年垂直起降技术将取得许多进步,这些进步将在第 79 届年度论坛上展示。本次征文邀请提交摘要,供该协会 21 个技术领域或历史学中的任何一个领域审议
1 越南河内河东区 Yen Nghia 坊 To Huu 街 Phenikaa 大学车辆与能源工程学院 2 韩国庆尚南道金海市 Eobang-Dong 607 号仁济大学机械工程系和高安全车辆核心技术研究中心 621-749 * 电子邮件:mechkhm@inje.ac.kr 收稿日期:2020 年 2 月 17 日/接受日期:2020 年 4 月 2 日/发布日期:2020 年 5 月 10 日 无人机 (UAV) 是一种没有人类飞行员的飞机,因此无人机的主要应用是无人员损失的监视。低空监视飞机是在小型机身中使用光传感器有效载荷的基础。由于监视通常需要秘密进行,因此静默飞行的能力允许使用低空飞机。对于无人机推进系统,光伏电池可用于在白天收集太阳能,其中一部分直接用于为推进装置和机载仪器供电,而剩余部分则存储在储能系统中以供夜间使用。在这种情况下,存储在电池和燃料电池中的电化学能源是两种最佳候选能源,因为它们的重量能量密度最高。总之,本综述旨在提高配备混合电力推进系统的无人机的高空长航时能力。关键词:无人机;光伏电池;燃料电池;混合电力推进系统;高空长航时 1. 引言
