教学讲师和课程主管,现代临床医生的道德算法|链接TA,分布式系统(CIS 5050,Penn)| 2025年春季TA,深度学习原理(ESE 5460,PENN)| 2024年秋季TA,成像信息学(EAS 5850,PENN)| 2024年春季,2024年夏季Head TA,医疗和技术(CIS 7000,Penn)| 2023年秋季,2024年秋季TA,医学生诊断超声(Penn)| 2023年 - 临时医学(PENN)|目前的TA | 2023年 - 现在的ta,应用数学(ACM 95A,加州理工学院)|冬季2021 TA,研究生物理学(pH 106A,加州理工学院)| 2020年秋季TA,应用数学(ACM 95B,加州理工学院)|春季2020 TA,量子物理学(pH 12B,加州理工学院)|冬季2020 TA,电动力学和磁性(pH 1C,加州理工学院)| 2019年春季TA,操作系统(CS 24,加州理工学院)| 2019年春季TA,波浪和振荡(pH 12A,加州理工学院)| 2019年秋季TA,电动力学和磁性(pH 1C,加州理工学院)| 2019春季TA,特殊相对论和静电学(pH 1B,加州理工学院)| 2019年冬季
摘要表明,与Lebiedow-Icz等人的主张相反。(Phys Rev D 105(1):014022,2022)在适当的物理变量中配制的较低定理(Phys Rev 110(4):974–977,1958)用于软光子发射不需要任何模拟。我们还拒绝Lebiedowicz等人的批评。(2022)论文(Phys。Burnett和Kroll。修订版Lett。 20:86–88,1968; Nucl Phys B 307:705–720,1988年的Lipatov。 同时,我们确定了Burnett and Kroll(1968)中的一些不准确性,以呈现软孔定理的旋转一半属性。 我们还指出了经典教科书中低定理的缺点(Berestetskii等人 量子电动力学。 Pergamon Press,牛津,1982年; Lifshitz和Pitaevsky在相对论量子理论中,第2部分,Fizmatlit,2002)。Lett。20:86–88,1968; Nucl Phys B 307:705–720,1988年的Lipatov。同时,我们确定了Burnett and Kroll(1968)中的一些不准确性,以呈现软孔定理的旋转一半属性。我们还指出了经典教科书中低定理的缺点(Berestetskii等人量子电动力学。Pergamon Press,牛津,1982年; Lifshitz和Pitaevsky在相对论量子理论中,第2部分,Fizmatlit,2002)。
• 双子座任务期间的旋转系留太空舱实验 • 小型一次性部署系统 (SEDS) – SEDS 1:使用 20 公里系绳使小型有效载荷脱离轨道 – SEDS 2:演示了 20 公里系绳的控制部署 – PMG:使用 500 米导线演示了电动力学物理基础知识 • 航天飞机系留卫星系统 (TSS) - 20 公里绝缘导电系绳 – TSS-1:部署 200 米,演示了稳定的动力学和回收
MTS Acumen 系统将 MTS 解决方案广为人知的广泛功能与以用户为中心的设计相结合,为测试专业人员提供了一种快速、简单的方法来建立或扩展内部能力。这些紧凑型系统易于安装、操作和维护。它们利用了 MTS 三十多年的电动力学专业知识,提供的解决方案表明了我们致力于为全系列材料测试提供高质量系统的承诺。
摘要 爱因斯坦经常用“光子盒”进行思想实验,无限次地存储场。但这还只是梦想。然而,我们可以在超导腔中存储数十亿个周期的量子微波场。使用圆形里德堡原子,可以非常详细地探测这些捕获场的量子态。腔量子电动力学工具可用于直接确定 Husimi Q 和 Wigner 准概率分布。它们提供了对场的经典或非经典性质的非常直接的洞察。
印度理工学院,坎普尔物理学系修订了课程清单(2023-2024-II)课程没有课程名称讲师1。PHY111物理实验室Soumik Mukhopadhyay* 2。phy112经典动态Amit Agarwal*,Rohit Medwal 3。PHY113电磁概论Dipankar Chakrabarti*,Nilay Kundu 4。phy114量子物理学简介Anjan K Gupta*,Y N Mohapatra 5。phy115振荡和波浪k.p.rajeev*,satyajit banerjee 6。PHY204/PSO201量子物理Sudipta Dubey 7。Phy205M软物质Manas Khan的基本面8。phy210热物理学库西克·帕尔9。phy226b特殊相对论swagata mukherjee 10。PHY307现代光学r Vijaya 11。PHY406量子材料简介Adhip Agarwala 12。PHY412统计力学Jayanta K Bhattacharjee 13。PHY461/PHY462 M.SC. 实验室Zakir Hossain 14。 PHY552经典电动力学I Avinash Singh 15。 PHY501+ 502 M.Sc. 审查项目II M.Sc. 审查项目III TARAKNATH MANDALPHY461/PHY462 M.SC.实验室Zakir Hossain 14。PHY552经典电动力学I Avinash Singh 15。PHY501+ 502 M.Sc.审查项目II M.Sc.审查项目III TARAKNATH MANDAL
作为量子科学中的重要资源,量子纠缠可在计算、密码学和材料科学等领域实现广泛的应用。其中一个强大的应用领域是计量学,纠缠多粒子量子态 1 – 8 的特性可提供更高的灵敏度和更高带宽的传感器。将此类增强功能与最先进的时间和频率计量学 9 – 14 (即光学原子钟)相结合一直是量子计量领域的明确目标。构建量子增强光学时钟对大地测量学 15、16、引力波探测 17 – 19 以及探索超出标准模型的物理学 20 具有广泛的影响。存在多种创建计量上有用的纠缠的方法。在中性原子光晶格钟中,已经提出了许多使用腔量子电动力学、里德堡相互作用或碰撞相互作用的方法 21 – 26 — 事实上,最近,已经使用集体腔量子电动力学相互作用在光钟跃迁中产生了自旋压缩态 27 。在囚禁离子中,光学分离量子比特上的纠缠的提议和实现依赖于库仑晶体模式介导的自旋-自旋相互作用,允许高效地产生纠缠和格林伯格-霍恩-泽林格态,最多可产生 24 个离子光学量子比特 28 或空间分布的单粒子之间的光子量子网络
多十年的理论效果已致力于找到一种有效的机制,用于使用Kerr-Newman Black Hole(BH)的旋转和电动力学可提取能,以为诸如γ-射线爆发(GRBS)和Active calactic untactic uneclei等最有能力的天体物理来源。我们显示了一个有效的一般相对论的电动力学过程,该过程发生在二进制驱动的超诺夫(Hypernova)的“内引擎”中。内部发动机由质量M的旋转KERR BH和无量纲的自旋参数α组成,强度B 0的磁场与旋转轴平行,并平行于旋转轴,以及非常低的密度离子化等离子体。在这里,我们表明,BH和磁场之间的引力磁相互作用引起了一个电场,该电场将来自环境的电子和质子加速到发射同步辐射的超层状能量。我们表明,在GRB 190114C中,质量m = 4的BH。4 m⊙,α= 0。4,B0≈4×10 10 g可以导致10 51 ERG S-1的高能量(GEV)发光度。内部发动机参数是通过要求(1)BH提取能解释了GEV和超弱的发射能量的确定的,(2)认为发射光子不受磁对生产的影响,并且(3)同步加速器辐射时间刻度与观察到的高emenergy TimeScale同意。我们发现GRB 190114C与BH旋转轴相对于BH旋转轴的半姿势角度大约60°的GEV能量清晰的喷射发射。
量子计算是旨在实现量子系统及其操纵的多方面研究领域。本论文讨论了在追求完全操作的量子计算机时的两种著名方法的组合 - 基于Majorana Quasiparticles的电路量子电动力学和拓扑量子计算。在电路量子电动力学中,量子信息被存储到小型超导电路元件中,这些电路元件与微波范围的电磁辐射相互作用允许非常有效地处理量子信息。这种方法已被证明对控制和读数超导Qubits非常有用,即携带Quantu信息的小电路元素。由于在微波谐振器中可以实现的极点耦合非常强,因此电路量子电动力学架构对于执行高度敏感的量子测量特别有用。超导性本身是一种有趣的物质状态,显示出各种不同的现象。尤其是,超导体中拓扑阶段的发现为量子计算打开了新的视野。一个认可的拓扑超导性的系统是一种半导体 - 驱动器纳米线,其末端发生了特殊的零模式。这些所谓的Majorana零模式非常可靠,因此非常适合容忍故障的量子计算。本文的第一部分研究了Majorana零模式与电磁辐射与微波频率的耦合。在此处考虑的光耦合机械词是针对位于电压偏置超导隧道连接处的Majorana零模式出现的。在Majorana零模式存在下微波辐射的发射产生的相干辐射会在通常的约瑟夫森频率的一半发射。根据该分数Josephson辐射,我们为Majorana Qubits提出了一个微波读数方案。像往常一样,用于电路量子电动力学的典型测量值,拟议的读数实现了Majorana量子量子的量子非解析测量。在论文的最后一部分中,我们提出了一种新的方案,用于实施测量诱导的纠缠量之间的远程超导Qubit,这是量子通信所需的。通过检测单个光子,该光子通过一个马赫德尔的干涉测量设置,确定性的纠缠具有单发效率。该方案基本上依赖于量子位和光子之间的强耦合。
