关于Ola Electric Mobility Limited Ola Electric Mobility Limited是印度领先的电动汽车(EV)制造商。它专门研究电动汽车及其组件(包括电池电池)的技术和制造的垂直整合。生产电动汽车和关键组成部分的泰米尔纳德邦的Ola FutureFactory正在发展成为印度最重要的EV HUB。它得到了Ola位于班加罗尔的电池创新中心(BIC)的支持,该中心致力于推进电池和电池技术。Ola的研发工作涵盖了印度,英国和美国,重点是创新的电动汽车产品和核心组件。Ola在印度拥有800多家商店以及强大的在线业务,维持了一个直接客户的分销网络,这使Ola Electric成为该国最大的公司拥有的汽车体验中心网络。
一个可以检测到行动和解码计划运动意图的系统,可以帮助所有可以计划运动但无法实施的受试者。在本文中,通过使用脑电图(EEG)信号来研究电动机计划活动,目的是解码运动制备阶段。在执行不同动作(肘部流量/扩展,前臂旋转/supination/supination/suplination/open/loth/collos)的过程中,可公开可用的61个通道EEG信号,右上肢录制了15个健康受试者的EEG信号。 引入了一种新型系统,用于静止与静止和前期时期的分类。 对于每个时期,所提出的系统都会通过光束成形和连续的小波变换(CWT)生成电动机源信号的时间频率(TF)图,然后将所有映射嵌入体积中并用作输入到深CNN中。 拟议的系统成功地歧视了前提下的平均准确度为90.3%(最低74.6%,最大100%),在文献中的表现优于可比较的方法,而在鉴别期间的VS vs vs vs等待中的平均准确度为62.47%。 所达到的结果鼓励通过深度学习方法在时间频域中的源级别调查电动机计划。可公开可用的61个通道EEG信号,右上肢录制了15个健康受试者的EEG信号。引入了一种新型系统,用于静止与静止和前期时期的分类。对于每个时期,所提出的系统都会通过光束成形和连续的小波变换(CWT)生成电动机源信号的时间频率(TF)图,然后将所有映射嵌入体积中并用作输入到深CNN中。拟议的系统成功地歧视了前提下的平均准确度为90.3%(最低74.6%,最大100%),在文献中的表现优于可比较的方法,而在鉴别期间的VS vs vs vs等待中的平均准确度为62.47%。所达到的结果鼓励通过深度学习方法在时间频域中的源级别调查电动机计划。
S32M27X是一种基于内部32位ARM®Cortex®-M7 S32K3微控制器的集成解决方案,并带有电压调节器,栅极驱动器,电流传感和LIN/CAN物理层。评估委员会可以对BLDC和PMSM控制应用程序进行快速原型和评估,而无需等待最终硬件设计。
如今,随着对清洁能源和可再生资源的重视,使用永久磁铁(PM)电动机引起了极大的关注。最新类型的PM电动机之一是Vernier永久磁铁电机(VPM)。本文着重于分析和评估式型Vernier永久磁铁电动机(SVPM)。这项研究的主要创新和贡献是引入了辐条型Vernier永久磁铁电动机的双定位配置。双定子式式型游标永久磁铁电动机(DSSA-PMVM)通常在转子上缺少通量屏障。在这项研究中,将磁通屏障纳入此类电动机的新型设计导致了新的运动架构的发展。带有通量屏障(DSSA-fbpmvm)的双站式型Vernier永久磁铁电动机有效地解决了传统Vernier Motors固有的一些挑战。游客电动机通常以低速输出为特征。但是,一个值得注意的缺点是他们的低功率因素。DSSA-FBPMVM不仅与同一体积内的SVPM相比增强了扭矩输出,而且还克服了SVPM的低功率因数问题,从而达到了相对理想的功率因数。本研究中使用的分析和评估方法基于二维有限元方法(2D FEM)。
摘要 - 电动机是电子推进系统的核心组成部分之一,在该行业中起着至关重要的作用。电动机的最佳设计提出了一个复杂的非线性问题,通常会挑战传统方法,以在准确性和效率之间取得平衡。实现准确的分析和整体优化通常需要大量的计算要求,尤其是在与大型个人打交道时。结果,研究人员开始探索数据驱动的替代模型来解决这一困境的利用。本评论论文着重于研究用于构建数据驱动的替代模型的领先技术,以协助和促进电动机的设计优化过程。这些技术包括统计模型,机器学习模型,深度学习模型和其他基于人工智能的技术。本文对基本原则进行了全面的调查,并提供了利用这些不同模型的研究的详细示例。此外,这些模型的性能和潜力都以评论为强调,从而阐明了它们各自的优势和局限性。此外,讨论了在此主题下提出的研究挑战,并有望在此主题下进行改进的途径。索引术语 - 手工智能,数据驱动的模型,深度学习,电动机,机器学习,优化,替代模型。
摘要 - 目的:本文展示了对添加功能性电刺激时,从原始脑电图(EEG)信号中检测到来自原始脑电图(EEG)信号的运动图像(MI)的兴趣。还报道了电极蒙太奇和带宽的影响。这项工作的观点是改善全身麻醉期间术中意识的检测。方法:对EEGNET的各种体系结构进行了研究以优化MI检测。它们已与脑部计算机接口的最新分类器(基于Riemannian几何形状,线性歧视分析)和其他深度学习体系结构(深度卷积网络,浅卷积网络)。eeg数据是从22位参与者中测量的,这些参与者有或没有中位神经刺激的运动图像。结果:EEGNET的拟议结构达到了最佳的分类准确性(83.2%)和假阳性速率(FPR 19.0%),用于设置,在运动皮层和额叶上只有六个电极,并且对于通过Median Median Nerve刺激了受试者的扩展4-38 Hz EEG频率。具有较大电极数量的配置导致128个电极的精度(94.5%)和FPR(6.1%)(分别为13个电极的88.0%和12.9%)。结论:目前的工作表明,使用扩展的EEG频带和经过修改的EEGNET深神经网络,当使用少于6个电极(包括额叶通道)时,会增加MI检测的准确性。明显的能力:所提出的方法基于脑电图的MI检测有助于开发脑部计算机界面系统。
摘要 - 能源存储是一种新兴技术,可以使基于可再生能源的分布生成的过渡,减少峰值功率需求以及生产和使用之间的时差。可以在网格级别(集中)或用户级别(分布式)上实施能量存储。化学蝙蝠代表了表现和成熟度的存储系统的事实上;但是,电池具有相当大的环境足迹,并使用珍贵的原材料。机械存储技术可以代替化学电池的可行替代方法,因为它们对环境和原材料的影响减少了。本文介绍了电动机/发电机的设计,用于家庭级别的木制储能。通过有限元分析(FEA)比较了三台参考机器:传统的铁核表面永久磁铁(SPM)同步机,一种同步降低机器(Synchrel)和无铁SPM合成机器。仿真表明,由于其高效率,高排放持续时间和低损失,无铁机器的分布储能良好。设计和制造了无铁的机器。实验确认模拟结果。
摘要:神经调节的领域缺乏影响可塑性个体差异的预测指标,这些差异会影响对重复的经颅磁刺激(RTMS)的反应。连续的theta爆发刺激(CTB)是一种以其抑制作用而闻名的RTM的形式,显示了个体之间的可变反应,这可能是由于神经可塑性的差异所致。预测单个CTBS效应可以极大地增强其临床和实验效用。本研究探讨了在神经调节之前测量的电动机诱发电位(MEP)输入输出(IO)参数是否可以预测运动皮层对CTB的反应。IO曲线是通过记录在一系列单脉冲TMS强度上的MEP来从健康成年人中取样的,以获得包括MEP Max和S 50(中点强度)在内的参数。后来比较了刺激前后的Moto Cortex及其MEP的相同位置的CTB。MEP Max和S 50都预测了响应,与CTB后10、20和30分钟的个人MEP变化显着相关(P <0.05,R 2> 0.25)。此外,我们介绍并验证了一种易于实现的生物标志物,该标志物不需要全IO曲线的耗时抽样:MEP 130RMT(中位数为10 MEP,在130%RMT)。MEP 130RMT也是CTBS响应的强有力预测指标(P <0.005,r 2> 0.3)。与先前研究的RTMS响应(BDNF多态性)的遗传生物标志物的头对头比较表明,基于IO的预测因子在解释更多响应变异性方面具有出色的性能。关键字:输入输出曲线,CTB,预测变量因此,在CTBS给药之前得出的IO曲线可以可靠地预测CTB诱导的皮质兴奋性变化。这项工作指向RTMS诊断和治疗应用中调整刺激程序的无障碍策略,并可能提高对其他大脑刺激方法的反应率。
Aymeric Guillot,Franck Di Rienzo,Cornelia Frank,Ursula DeBarnot,Tadhg E MacIntyre。从模拟到电动机执行:对动态运动图像对穿孔的影响的回顾。国际体育和运动心理学评论,2021,17(1),pp.420-439。10.1080/1750984x.2021.2007539。hal-04672047
等效磁网络(EMN)方法似乎是电动机中磁场的一种更有效的分析方法,比等效磁路方法(EMC)[11]和比有限元方法(FEM)相比,相结合了更高的计算精度和更快的计算速度。W. Shi等。研究了具有V形磁铁结构的PMSM的EMN,该结构可以准确计算磁场分布并模拟电动机的抗磁力化能力[12]。J. Zhang等。 提出了双层磁铁结构永久磁铁同步不情愿电动机,并建立了其EMN模型,该模型可以准确计算电动机的气隙通量密度分布,并用于转子结构的设计和优化[13]。 尽管如此,[12]和[13]中的EMN模型不可用于计算绕道通量,电动力(EMF)和扭矩波形以及转子旋转。 然后,介绍了根据转子位置修改EMN在定子和转子之间的连接的动态EMN模型,以解决此问题。 H. Kwon等。 研究并建立了具有表面无磁体结构的PMSM的动态EMN模型,该模型可以获得与FEM相似的磁场计算结果[14]。 G. Liu等。 研究了具有单层V形磁体结构的PMSM的动态EMN模型。 其正确性通过FEM和实验验证[15]。 但是,在本文中对拟议的DVMPMSM的动态EMN模型没有相关的研究。J. Zhang等。提出了双层磁铁结构永久磁铁同步不情愿电动机,并建立了其EMN模型,该模型可以准确计算电动机的气隙通量密度分布,并用于转子结构的设计和优化[13]。尽管如此,[12]和[13]中的EMN模型不可用于计算绕道通量,电动力(EMF)和扭矩波形以及转子旋转。然后,介绍了根据转子位置修改EMN在定子和转子之间的连接的动态EMN模型,以解决此问题。H. Kwon等。研究并建立了具有表面无磁体结构的PMSM的动态EMN模型,该模型可以获得与FEM相似的磁场计算结果[14]。G. Liu等。研究了具有单层V形磁体结构的PMSM的动态EMN模型。其正确性通过FEM和实验验证[15]。但是,在本文中对拟议的DVMPMSM的动态EMN模型没有相关的研究。在[16]中,动态EMN模型用于表面安装的PMSM的多目标优化,这对电动机的快速设计有益。