β细胞功能障碍是糖尿病患者疾病进展的标志。研究一直集中在糖尿病发育过程中维持和恢复β细胞功能。这项研究的目的是探索人类胰岛中含有11A(Clec11a)的C型凝集素结构域的表达(CLEC11A),一种分泌的硫酸糖蛋白,并评估Clec11a对β细胞功能和体外增殖的影响。在这项研究中使用了这些假设,人类胰岛和人类βH1细胞系。我们确定了Clec11a在人类胰岛中的β细胞和α细胞中表达,但在内oc-βH1细胞中却没有表达,而在人类胰岛和Endoc-βH1细胞中都发现了CLEC11a的受体称为整合素亚基α11。用外源重组人Clec11a(RHCLEC11A)的长期治疗强调了葡萄糖刺激的胰岛素分泌,胰岛素含量以及来自人类胰岛和内c- H1细胞的增殖,这部分是由于转录因子MAFA和PDX1的强调表达水平。然而,在慢性棕榈酸酯暴露引起的β-βH1细胞中INS和MAFA的mRNA表达降低,只能通过引入RHCLEC11A来部分改善。基于这些结果,我们得出结论,RHCLEC11A促进了人β细胞中胰岛素的分泌,胰岛素含量和增殖,这与转录因子MAFA和PDX1的强调表达水平相关。clec11a可能会为糖尿病患者维持β细胞功能提供新的治疗靶点。
Sandvik出于安全原因选择了LFP的BEV。LFP的结构稳定性意味着,在细胞温度升高的情况下,它以其他化学的速度较低。如果电池电池热事件,由于LFP结构稳定性,能量,加热速率和最高温度大大低于其他锂离子化学。LFP化学在热事件中不会释放氧气。如果开火,这种化学反应会通过保持内在化并缓慢燃烧来大大减少爆炸性或大火的机会。
一种称为电解质的化学溶液允许阴极和阳极之间的电荷流动。锂的正电荷颗粒,称为离子,穿过从阳极传播到阴极的电解质。此机芯会产生连续的电子流以提供电力。
1名学生,2名学生,3名学生,4位助理教授,1,2,3,4电气工程系1,2,3,4 Gramin技术与管理校园,NANDED,印度,摘要:由于需求的增长,电动汽车(EVS)日益严重。 在EVS中,需要进行广泛的研究,以替代石油和其他燃料的替代品。 与燃烧引擎车相比,电动汽车在提供舒适性和效率方面取得了成功,但电动汽车仍然需要注意电动汽车的充电。 电动汽车的充电时间更长,每个制造公司都有不同的电池布置,因此充电器的评级不同。 我们提出了设计通用系统,用于使用脉冲宽度调制,以用于电池充电。 我们正在对“ PWM控制的通用电动汽车电池充电器”开发MATLAB模拟。 提议的系统将足够聪明,可以识别电动电动电气电池的电压额定值。 识别电池PWM受控电池充电器后,将在最短时间内为电动汽车电池充电。 该系统将在电动汽车研究领域发挥重要作用。 索引项 - MATLAB模拟。 引言电动汽车(EV)的基础设施随着电动汽车市场的增长而变得重要。 两个主流电荷连接器协议是充电DE移动(Chademo)和联合充电系统(CCS),它们具有不同的电池电压范围。 通用充电器的 DC/DC转换器需要在整个输出电压范围内实现高效率。1名学生,2名学生,3名学生,4位助理教授,1,2,3,4电气工程系1,2,3,4 Gramin技术与管理校园,NANDED,印度,摘要:由于需求的增长,电动汽车(EVS)日益严重。在EVS中,需要进行广泛的研究,以替代石油和其他燃料的替代品。电动汽车在提供舒适性和效率方面取得了成功,但电动汽车仍然需要注意电动汽车的充电。电动汽车的充电时间更长,每个制造公司都有不同的电池布置,因此充电器的评级不同。我们提出了设计通用系统,用于使用脉冲宽度调制,以用于电池充电。我们正在对“ PWM控制的通用电动汽车电池充电器”开发MATLAB模拟。提议的系统将足够聪明,可以识别电动电动电气电池的电压额定值。识别电池PWM受控电池充电器后,将在最短时间内为电动汽车电池充电。该系统将在电动汽车研究领域发挥重要作用。索引项 - MATLAB模拟。引言电动汽车(EV)的基础设施随着电动汽车市场的增长而变得重要。两个主流电荷连接器协议是充电DE移动(Chademo)和联合充电系统(CCS),它们具有不同的电池电压范围。DC/DC转换器需要在整个输出电压范围内实现高效率。通常,Chademo覆盖了最高500 V的相对低压电池,CCS覆盖了最高950 V的高压电池。要与所有EVS兼容,以适应Chademo或CCS,需要开发一个覆盖电池电压极广泛的通用EV充电器。src由于其较大的磁性电感而导致其循环损失较小,导致在谐振频率下的效率较高,但是,SRC仅提供降低电压转换率,而LLC转换器达到了启动频率的增益,而当切换频率变小时,则在较小的情况下,由于循环的循环量是在交付的方面,并且在ersonant consection中存储了这些方面,并且在这些方面取得了循环范围,而这些方面是在这些方面取得的范围,而这些方面是在这些方面取得的范围,而这些循环均可在这些方面取出,而这些均可在这些方面取得了进出,而这些转换率是在这些方面的转换,则可以在这些方面取得了进出,而这些转换率是在这些方面的转换,而这些均可依次,而循环均可置换。请注意,SRC的循环电流较小,但增益范围也有限。因此,如果在SRC中可以实现更广泛的增益,则有可能同时具有较小的循环电流和广泛的增益。由于这些原因,已经有几种方法可以为SRC提供更广泛的收益。第一种方法是脉冲宽度调制(PWM)调整的谐振转换器。在这种方法中,PWM信号引起的增强周期会增强谐振电流,从而使谐振转换器可以实现增益。这样做,可以通过较窄的开关频率范围覆盖各种电压转换比。可以通过较窄的开关频率范围降低磁性组件的尺寸。唯一的问题是当需要高增益时,共振电流的峰值很大。第二种方法是一种拓扑化技术。谐振电流的大峰会引起大的RMS电流,并导致增强开关损失。在这种方法中,控制某个开关组件以重新配置逆变器或整流器结构。例如,通过完全打开开关,全桥逆变器也可以用作半桥逆变器。
电动化的步伐将因车辆类型而异。本地配送或最后一英里和公共交通车队运营商已经准备好进行电动化。正如一位行业专家在谈到本地包裹递送时所说,“由于三个因素——运营时间短、能够返回中心基地以及与再生制动配合良好的频繁停止和启动——工作周期非常适合电动化”(Motavalli 2020)。公共交通车辆具有类似的特点,并获得了大量的政策支持:例如,纽约的公共交通机构已宣布计划到 2035 年将其公交车队电动化,到 2025 年的中期目标是 25%(纽约州州长办公室 2020)。在全球范围内,BNEF 的 2021 年电动汽车展望预测,到 2030 年,所有公交车销售的约 60% 将是电动汽车。
摘要:最近几天使用的各种发电技术来源。自动车辆拥有巨大的未来。道路运输主要使用。汽车的使用量大大增加,对汽油和柴油的需求增加。现在由于这些电动汽车而开始在我国实施。甚至政府也开始鼓励电动汽车开发商。在公共停车设施中,只有停放在带有充电点的专用停车位的电动汽车(EV)才能享受充电服务。在每个停车位上安装一个充电点非常昂贵。作为替代方案,该项目在公共交通设施中提出了新颖的想法,只有电动汽车(EV)才能以无线充电路径为专用的电动汽车(EV),可以享受充电服务。将无线充电路径(WCP)安装为电动汽车服务路(EVSR)。像服务道路一样,可以轻松地在旅行时无线为电动汽车充电。通过无线进行充电机理,该无线减少电缆的需求,减少等待时间的充电时间,并基于太阳能的生成系统。它也基于AIS人工智能系统。
道路事故死亡被认为是包括尼日利亚在内的世界发展中国家社会经济发展的主要威胁之一。汽车(第三方)保险法已颁布,以有效管理驾驶者的道路交通事故责任。该研究检查了机动车(第三方)保险法规对道路交通责任风险管理的影响。这项研究采用了执法理论和法规合规理论。该研究人群包括西南州的私人电动机和商用车的驾驶者,除了法规的高度合规性,但基于执法人员的集中度,不包括拉各斯州。分别从FRSC和NIA获得了有关注册车辆和被保险车辆的相关数据。在尼日利亚西南部的五(5)个州的464个机构医生中进行了结构化问卷,从每个正在研究的州选择州首都。描述性统计数据用于分析问卷的社会人群部分,而相关性和回归分别用于分析研究问题和研究假设。该研究的结果表明,汽车(第三方)保险法规合规性决定了驾驶者责任风险保护和保险公司的增加保费收入,这决定了对经济增长的保险贡献(GDP)。该研究还表明,执行汽车保险法规和道路事故赔偿决定了机动车(第三方)保险法规的合规性。但是,该研究建议通过适当的机构进行联邦政府概念化一项计划,以保证驾驶者遵守汽车(第三方)保险法规。关键字:汽车保险,法规合规性,第三方风险,驾驶员责任
摘要:未来的停车场将需要大量电力来支持电动汽车 (EV) 充电,因为随着电池组容量的增加,电动汽车的普及率将提高,对充电电力的需求也将增加。可以安装有效的充电管理和本地电池存储,以帮助防止电力馈线容量过度增加;然而,停车场在未来不可避免地会获得大量的电力。因此,停车场所有者有机会利用这一点,并通过向电网提供频率响应服务来创造额外的收入。本文介绍了一个停车场的建模,该停车场利用光伏发电、电池存储和电动汽车充电管理策略来提供电网频率响应服务。使用模拟停车场数据的分析表明,它可以提供高可用性的服务,但这取决于安装的发电和存储的容量。
建议引用:Horani MO、Najeeb、M. 和 Saeed、A. (2021)。利用太阳能进行无线充电的电动汽车模型。 3C技术。应用于中小企业的创新词汇表,10(4),89-101。 https://doi.org/10.17993/3ctecno/2021。 v10n4e40.89-101
同时,最流行的最高功率点跟踪方法也是如此。以最高精度提高电导率的方法是最好的。它允许跟踪大量功率。它跟踪最大功率点。很明显,当改变工作电压时,恒流源工作区域的输出电压是不同的,公差低,恒定电压下的灵敏度明显,以改进跟踪方法,使得在温度、光强度和输出功率确定的情况下,最大功率点跟踪准确。Rattankumar,V,NP Gopinath[2] 自从我们设想有效利用非传统能源以来,未来就不存在化石燃料。我们消除了传统车辆的几个缺点,例如减少耦合损耗、场损耗、平稳的速度处理和燃料费用。制造太阳能汽车的关键部件是光伏模块、太阳能管状电池、BLDC、阿克曼转向、机械结构和 MCB。阿克曼转向、机械设计和小型断路器是太阳能汽车的配置之一。太阳能汽车以 30 公里/小时的速度开发,目前一次充电需要大约 18 小时,并且已被证明每次充电可行驶 100 公里。人们正在做更多的工作来改进这辆车,现在它由标准发动机的 BLDC 驱动。它还提议使用体积小的高效太阳能电池板。人们正在调查不同车辆的缺陷,并采取措施消除它们,希望将来能开发出商业上成功的太阳能汽车模型。Alnunu、Nasser 等人。[3] 随着人们越来越意识到可持续能源的重要性,环境正在促进可再生能源领域的研究和开发。可再生能源领域的领域和经验的发展得到了认可和