JRC141313塞维利亚:欧洲委员会,2025年©欧盟,2025年,欧盟委员会文件的重用政策由2011/833/eu于2011年12月12日在委员会文件的重新使用文件(OJ L 330,14.12.20112.2011,第39页)上实施。除非另有说明,否则该文档的重复使用将根据创意共享归因4.0国际(CC BY 4.0)许可(https://creativecommons.org/licenses/4.0/)授权。这意味着只要给出适当的信用并指示任何更改,就可以重复使用。必须直接从版权所有者那里寻求任何欧盟许可拥有的照片或其他材料的使用或复制。来源: - 在封面插图中从左开始:1。电铜,镍和镀铬钢金属产品的生产过程。从电化板浴的台面起重机抬起金属产品。agalvanic Line的片段 - ©nskyr2 -stock.adobe.com; 2。电镀 - ©Lakeview Images -Stock.adobe.com; 3。在洁净室操作精致的微芯片制造设备中的技术人员©Maksym -Stock.adobe.com; - 图4 2:门的消防水舱壁©Wolfram Willand-图4 3:分段门和通行门的舱壁©Wolfram Willand如何引用该报告:欧洲委员会:欧盟委员会:联合研究中心,修订后的金属和塑料(STM)BREF,SEVILE,SEVILLE,SEVILE,SEVILE,20255,2025,JRC,JRC的第一稿(D1)。
I.简介锂离子电池的经典Doyle-Fuller-Newman(DFN)电化学模型[10,14,30],其中包括反馈结构和状态空间。通过将快速双层电容动力学分为模型[31]来得出公式。识别非线性电池模型的固有反馈结构为使用输入输出系统理论[9,19]开辟了其分析的可能性。模型分析的关键特征是它是可靠的,因为它不依赖于模型非线性(例如开路电位(OCP)曲线)的确切知识。因此,该公式可以允许“广义”分析,该分析适用于被动非线性的所有实例。本文的重点是通过考虑其模型方程中的结构,而不是通过提出新的电化学来促进基础DFN模型的使用。希望此处开发的结果能够使DFN模型用于更广泛的应用,例如在单个粒子模型[8]中观察到,并将揭示该模型的关键特征,以促进其开发并了解其对内部电化学的预测。锂离子电池是一种近乎无处不在的能量进程技术,可将出色的功率和能量密度结合到一种设备中。这导致了他们在许多领域的成功应用,包括混合动力汽车,个人电子产品和网格存储。但是,这些电池仍然不受几个局限性的影响,包括几百个电荷周期后的衰老开始,稳定性问题
本文介绍并解释了在伤口净化过程中用电化学方法增强等离子活化水凝胶疗法 (PAHT) 抗菌作用的原理。该过程涉及在用氦 (He) 等离子射流治疗期间接地和水合聚乙烯醇 (PVA) 水凝胶薄膜。这在电化学上增强了过氧化氢 (H 2 O 2 ) 的产生,过氧化氢是 PVA 水凝胶中产生的主要抗菌剂。研究表明,通过电子解离反应以及与激发态物质、亚稳态和紫外 (UV) 光解相关的反应,H 2 O 2 的产生在电学上得到增强。通过等离子射流的氦流使 PVA 水凝胶脱水,在化学上增强了 H 2 O 2 的产生,这为与 H 2 O 2 产生相关的电化学依赖反应提供了能量。电化学过程在 PVA 水凝胶中产生了前所未有的 3.4 mM 的 H 2 O 2。该方法还增强了其他分子(如活性氮物质 (RNS))的产生。电化学增强的 PAHT 可高效消灭常见的伤口病原体大肠杆菌和铜绿假单胞菌,对金黄色葡萄球菌有轻微效果。总体而言,这项研究表明,新型 PAHT 敷料为控制感染和促进伤口愈合提供了一种有希望的抗生素和银基敷料替代品。
在图1A中提供了经典的电化学实验设置,我们可以观察到,在感兴趣的解决方案中,我们可以观察到商业上可用的固体玻璃碳的工作(直径为3 mm,我们),计数器(CE)和参考(RE)电极。这是电化学的支柱,产生有用的电化学和电分析结果。使用这些电极,可能需要通过电极清洁(电化学上)和/或在实验性测量之间进行电极清洁和/或抛光来补充工作电极的表面,这是由于物种或离子的吸附以及经验间测量过程中可能导致交叉歧义的记忆工作。围绕此方法的一种方法是使用屏幕打印的石墨电极,请参见图1B,这些电极已显示提供相同的电化学测量值,但具有以下益处:[1-15] 1.成本效益:与传统的固体电极相比,屏幕打印的电极相对便宜,因此由于其经济规模而使其用于研究和工业应用; 2。一次性:由于它们是廉价的屏幕打印电极,通常是一次性的,因此消除了清洁的需求,并降低了样品之间交叉污染的风险; 3。微型化和低体积:可以用在较小的整体区域工作的较小的电极制成屏幕打印的电极,从而可以使用屏幕打印的电极,在该电极中使用较小的样品体积允许设备小型化是一个优势。经典用途结合了微流体和
摘要运输的电化是一种减少全球移动源排放和空气污染的增长策略。为了鼓励采用电动汽车,需要可靠的证据证明可以在公共充电站中定价,以服务于更多社区。但是,成千上万的充电点运营商(CPO)的用户输入定价信息已经对大规模聚合产生了歧义,从而增加了研究人员的分析成本和消费者的搜索成本。在本文中,我们使用大型语言模型来解决分布式数字数据中的价格发现的常规挑战。我们表明,生成的AI模型可以从非结构化的文本中有效提取定价机制,其精度高得多,并且成本低于人类策划的三到四个数量级(每个观察值0.006美元)。我们使用human-in-the-the-the-the-limop反馈来利用GPT-4的少量学习能力 - 借助较少的培训数据来利用先前的分类基准。最常见的定价模型包括自由,基于能量的(每千瓦时)和基于时间的(每单位时间),其定价(基于用法的可变定价)是付费站中最普遍的。来自13,008个电视台的美国国家代表性样本的行为见解表明,EV使用者通常对比预期的收费率慢和总收费成本感到沮丧。这项研究不涵盖收费服务的其他消费者障碍,即需要更好的价格标准化。
具有有利的电化学特征的2D/2D异质结构(HTS)的生产具有挑战性,特别是对于半导体过渡金属二甲硅烷基(TMDS)而言。在这项工作中,我们引入了一项基于CO 2激光绘图仪的技术,用于实现包括氧化石墨烯(RGO)和2D-TMDS(MOS 2,WS 2,MOSE 2,MOSE 2和WSE 2)的HT膜。该策略依赖于激光诱导的异质结构(LIHTS)的产生,在辐照后,纳米材料在形态和化学结构中显示出变化,成为导电易于转移的纳米结构膜。LIHT在SEM,XPS,Raman和电化学上详细介绍了LIHT。激光处理诱导GOS转化为导电性高度去角质的RGO,并用均质分布的小型TMD/TM-氧化物纳米片装饰。所获得的独立式LIHT膜被用来在硝酸纤维素上构建独立的传感器,其中HT既可以用作传感器和传感表面。所提出的硝酸纤维素传感器制造过程是半自动化和可重现的,可以在相同的激光处理中生产多个HT膜,并且模具印刷可以定制设计。证明了不同分子(例如多巴胺(神经递质),儿茶素(黄酮醇)和过氧化氢)在电分析检测中的卓越性能,从而获得了生物学和农业样本中的纳米摩尔限制,并获得了高纤维抗性的纳摩尔限制。考虑到强大而快速的激光诱导的HT产生以及涂鸦所需模式的多功能性,提出的方法是通过可持续和可访问的策略开发电化学设备的破坏性技术。
运输部门的电化导致Ve Hicles中锂离子电池的部署增加。今天,在电动汽车,电动巴士和电船中安装了牵引力电池。这些用例会在电池上提出不同的需求。在这项工作中,来自82辆电动汽车的60台电动汽车和现场数据的模拟数据使用,来自德国的6艘电动船只根据运输方式来量化与电池运行和预期寿命相关的一组应力因素。为此,最初旨在模拟固定应用程序中的电池操作的开源工具模拟人生扩展到分析移动应用程序。现在允许用户在开车和充电时模拟电动汽车。The analyses of the three means of transportation show that electric buses, for example, consume between 1 and 1.5 kWh/km and that consumption is lowest at ambient temperatures around 20 ◦ C. Electric buses are confronted with 0.4 – 1 equivalent full cycle per day, whereas the analyzed set of car batteries experience less than 0.18 and electric boats between 0.026 and 0.3 equivalent full cycles per day.分析的其他参数包括平均收费,平均充电率和平均行程周期深度。除了这些评估之外,将运输平均值的电池参数与三个固定应用的电池参数进行了比较。我们透露,家庭存储和平衡功率应用中的固定存储系统产生的等效全周期与电动总线相似,这表明在这些应用中可以使用类似的电池。此外,我们模拟了不同充电策略的影响,并显示了它们对电池降解应力因素在电子传输中的严重影响。为了促进广泛和多样化的用法,与这项工作相关的所有配置文件和分析数据都是作为开放数据作为这项工作的一部分提供的。
摘要:使用简单的化学浴沉积方法,将纳米结构的铁二硫化物(FES 2)均匀沉积在再生纤维素(RC)和氧化的碳纳米管(CNT)基于氧化的碳纳米管(CNT)的复合膜上,以形成RC/CNT/FES/FES 2复合膜。RC/CNT复合膜是FES 2微球的均匀沉积的理想底物,这是由于其独特的多孔结构,较大的特定表面积和高电导率。polypyrole(PPY),一种导电聚合物,以提高其电导率和循环稳定性。由于FES 2具有高氧化还原活性和具有高稳定性和电导率的PPY的协同作用,RC/CNT/FES 2/PPY复合电极表现出出色的电化性能。用Na 2测试的RC/CNT/0.3FES 2/PPY-60复合电极因此,在1 mA cm-2的电流密度下,水溶液可以实现6543.8 mf cm-2的优异面积电容。电极在10,000电荷/放电周期后保留了其原始电容的91.1%。扫描电子显微镜(SEM)图像显示,在10,000周期测试后,在RC/CNT/0.3FES 2/PPY-60膜中形成了孔径为5-30μm的离子转移通道。由两种相同的RC/CNT/0.3FES 2/PPY-60复合电极组成的对称超级电容器设备提供了1280 MF CM - 2的高度电容,最大能量密度为329μWHCM - 2,最大功率密度为24.9 mW cm-w cm-w cm-w cm-w cm-w cm-2%,且86-2%2%。在40 mA cm-2处的循环在1.4 V的宽电压窗口进行测试时。这些结果表明,RC/CNT/FES 2/PPY复合电极的最大潜力用于制造具有高工作电压的高性能对称超级电容器。
Colombes,2022年5月3日Arkema,CNRS,Claude Bernard Lyon 1 University和CPE Lyon正在结合其专业知识,以设计未来的电池,便携式能源需求的越来越重要的部分将基于移动能源存储设备,例如Lithium-ion电池。Arkema,CNRS [中心德拉·雷·雷·科学(Central De La Recherche Scientifique)(法国国家科学研究中心)],里昂1大学和CPE Lyon [écolesupérieurede chimie,Gredsique,Gredlectique,Gredlectronique de Lyon(Grande de Lyon)(Grande'Chemist of Chemistry of Chemistion of Chemistry of Chemistion of Chemistion of Chemistry,Threntics和Electronics)]。 该联合实验室将专门针对基于氟聚合物的新高性能材料的设计,该材料将在后代的电池中使用。 使用电动汽车,智能手机和笔记本电脑,对移动储能设备的需求不断增长。 这种需求主要由锂离子电池满足。 它们由两个电极组成,这些电极由于存在分离剂而不会相互接触,它们都沐浴在电解质溶液中。 不同的荧光聚物(Kynar®PVDF所属的一个分子家族)提供了出色的成本 - 性能比例,作为阴极粘合剂和分离剂涂层,以提高其性能:能量密度,功率,功率,储能,寿命,可靠性,可靠性,寿命,寿命,寿命,催化,催化,材料实验室在这些方面的研究多年,这是对这些政策的整合,而不是在这些方面进行的,而这些杂志的范围比这是多年的,而不是这些杂志的范围,而不是这些杂种,而不是在这些方面进行的,而不是在这些方面进行的,那么这些杂志的范围是众所周知的,而不是这些杂货,而不是在这些方面进行的,那么多年的研究是,众所周知,众所周知,更多的杂志,多年的研究,多年来的研究, CNRS,Claude Bernard Lyon 1 University和CPE Lyon,在一个新的联合实验室项目中:IHUB Poly-9。 这种聚合物家族在化学和电化学上都非常稳定。Arkema,CNRS [中心德拉·雷·雷·科学(Central De La Recherche Scientifique)(法国国家科学研究中心)],里昂1大学和CPE Lyon [écolesupérieurede chimie,Gredsique,Gredlectique,Gredlectronique de Lyon(Grande de Lyon)(Grande'Chemist of Chemistry of Chemistion of Chemistry of Chemistion of Chemistion of Chemistry,Threntics和Electronics)]。该联合实验室将专门针对基于氟聚合物的新高性能材料的设计,该材料将在后代的电池中使用。使用电动汽车,智能手机和笔记本电脑,对移动储能设备的需求不断增长。这种需求主要由锂离子电池满足。它们由两个电极组成,这些电极由于存在分离剂而不会相互接触,它们都沐浴在电解质溶液中。不同的荧光聚物(Kynar®PVDF所属的一个分子家族)提供了出色的成本 - 性能比例,作为阴极粘合剂和分离剂涂层,以提高其性能:能量密度,功率,功率,储能,寿命,可靠性,可靠性,寿命,寿命,寿命,催化,催化,材料实验室在这些方面的研究多年,这是对这些政策的整合,而不是在这些方面进行的,而这些杂志的范围比这是多年的,而不是这些杂志的范围,而不是这些杂种,而不是在这些方面进行的,而不是在这些方面进行的,那么这些杂志的范围是众所周知的,而不是这些杂货,而不是在这些方面进行的,那么多年的研究是,众所周知,众所周知,更多的杂志,多年的研究,多年来的研究, CNRS,Claude Bernard Lyon 1 University和CPE Lyon,在一个新的联合实验室项目中:IHUB Poly-9。 这种聚合物家族在化学和电化学上都非常稳定。不同的荧光聚物(Kynar®PVDF所属的一个分子家族)提供了出色的成本 - 性能比例,作为阴极粘合剂和分离剂涂层,以提高其性能:能量密度,功率,功率,储能,寿命,可靠性,可靠性,寿命,寿命,寿命,催化,催化,材料实验室在这些方面的研究多年,这是对这些政策的整合,而不是在这些方面进行的,而这些杂志的范围比这是多年的,而不是这些杂志的范围,而不是这些杂种,而不是在这些方面进行的,而不是在这些方面进行的,那么这些杂志的范围是众所周知的,而不是这些杂货,而不是在这些方面进行的,那么多年的研究是,众所周知,众所周知,更多的杂志,多年的研究,多年来的研究, CNRS,Claude Bernard Lyon 1 University和CPE Lyon,在一个新的联合实验室项目中:IHUB Poly-9。这种聚合物家族在化学和电化学上都非常稳定。该实验室与阿克马(Arkema)在皮埃尔·贝尼特(PierreBénite)网站上新创建的卓越中心合作进行了合作。 “我对与Arkema的这种合作伙伴关系感到高兴,这是漫长的合作历史的一部分。我们正在遵守一项与各种规模的公司一起发展联合实验室的政策,正如已经存在的200多个联合实验室所证实的。商业与学术界之间这种雄心勃勃的合作形式是基于基础研究,以应对重大工业挑战。” CNRS总裁兼首席执行官Antoine Petit。“这个实验室是Arkema与CNRS之间的长期合作的另一个联合倡议。这是Arkema持续致力于与学术界建立创新和伙伴关系的持续承诺的完美例证。这使我们能够利用最佳专业知识,以在电池和氢等战略领域开发可持续的高性能材料。所涉及的科学家对聚偏二氟乙烯(PVDF)及其共聚物特别感兴趣。它们的合成发生在分散在水中的培养基中,需要高压超过100 bar的压力,CP2M受益的专业知识,因为它具有反应器能够完全安全地达到这些压力。与Arkema的合作主要用五个将研究用于能源领域的荧光聚合物的合成和处理的博士学位。这包括由Auvergne-Rhône-Alpes地区资助的论文,以及由公司资助的三个Cifre [Convention Industrielle de Mortation Par la Recherche(工业研究培训培训培训)],以及公司在50英里的设备上购买的设备,专门用于iHub Poly-9 in the Porlesises porders porsiss cp2m cp2m。
其他LAB是一种在旧金山领导的早期研发实验室的思想,致力于围绕气候变化的工程解决方案。这包括可再生能源产生,能源使用的电化和去除碳。其他LAB专注于粮食生产和清除碳的联系,理解,即使全球农田的少量减少也能使我们保持在1.5 r的温暖下,并且这种碳除去碳的清除成本负面,迅速缩放,提高粮食安全,恢复自然的栖息地和生物,并有助于减轻六个六人的巨大量。乔治·蒙比奥特(George Monbiot)的“恢复,在不吞噬地球的情况下为世界喂食”,详细介绍了许多论点,并提供了可引用的参考文献。他建议的溶液集在很大程度上仅限于植物饮食,并直接从氢气中对蛋白质和脂肪进行自由养殖精确发酵。其他LAB正在开发〜3倍产量和较低成本机器人农业的关键促成技术,沙漠耕作的低成本海水淡化(仅澳大利亚就可以养活世界),并将耕种移动到海上(水下机器人锚定和上升,不到1%的地球海洋可以养活世界)。这些解决方案中的任何一种均可在所需的时间(有先例)扩展,并以负有效的碳去除成本保持地球以下1.5℃升温。上述所有解决方案共同努力,使我们能够快速,全面地节省地球,同时增加全球繁荣,甚至花时间减少排放。其他LAB还正在开发一种移动生物填充技术,该技术可以以较低的成本将生物量直接转化为化石燃料当量。至关重要的是,这可以从超过许多农作物的自然栖息地管理中产生收入,从而创造了经济激励措施,并增加了过渡农民的收入来源。清除碳主要是粮食生产与自然栖息地之间竞争的问题(我们耕种了世界一半以上,需要集成的解决方案,这可能会在未来几年内破坏易受伤害的碳市场。