开发先进的可再生能源存储系统对于应对化石燃料使用量的增加至关重要。由于二次电池具有高能量密度和转换效率,因此优于其他储能技术(图 1)。近年来,二次锂离子电池因其在消费电子产品、医疗设备和电动汽车中的广泛使用而成为我们生活中不可或缺的一部分 [1]。然而,当前一代锂离子电池 (LIB) 在商用电动汽车中的应用受到其低能量密度(100-250 Wh kg -1 )和功率密度(250-400 W kg -1 )的限制 [2]。对于行驶里程为 500 公里的电动汽车,电池组级能量密度需要超过 350 Wh kg -1 [3]。在这方面,正在研究许多方法来通过使用高性能纳米结构电极材料来改善锂离子电池电化学的电化学性能。
SAFT已成功地将锂离子电化学应用于需要很高功率和安全性的国防,空间和商业应用。通过优化电化学和电力电池设计,SAFT开发了一系列锂离子产品,可以为关节打击战斗机或赛车应用提供超过50 kW/kg的功率,或者以> 250 WH/kg的速度用于需要高能量内容的应用。本文介绍了SAFT的高级液化电化学的研发工作。尤其是,高级磷酸盐阴极(例如LMFP)是针对PHEV2和军事BB-2590的高安全性和改进的电化学性能的。此外,诱人的结构LVPF化学以进一步改善的能量密度正在开发中。关键词高能;高安全性; LMFP,LVPF,固态电池
导电聚合物因其可用于设计微电子局部电活性图案而备受关注。在这项工作中,我们利用聚吡咯的特性,结合双极电化学引发的无线极化,产生局部电阻梯度图案。物理化学改性是由聚吡咯的还原和过氧化引起的,这会在预定位置的导电基板的不同位置产生高电阻区域。由于聚吡咯具有出色的柔韧性,可以形成 U 形、S 形和 E 形双极电极用于概念验证实验,并进行电化学改性以产生明确的电阻梯度。样品的 EDX 分析证实了局部物理化学改性。与更传统的图案化方法相比,这种方法的主要优势是双极电化学的无线特性以及可能对电化学改性的空间分布进行微调。
Dave 和他的联合创始人着手组建一支由来自当今最具启发性的深度科技公司(SpaceX、Tesla、First Solar 等)的世界级工程师和科学家组成的团队。他们让团队从头开始重新思考电解,并有一个指导方针——最大限度地降低可再生氢的平准化成本 (LCOH)。该团队热切地利用最新的工具、方法和横向思维,从其他行业和学科带来新颖的想法,开始着手设计。在每一个设计决策中,可制造性和可施工性都是最重要的。他们彻底改造了现有的设计,优化了系统权衡,重新设计了关键组件,并推动了电化学的发展。他们的目标是建立一个能够以与化石燃料同等的成本生产无化石燃料 H2 的电解厂。Electric Hydrogen (EH2) 内部对降低成本的执着追求成为了公司的北极星。
生物传感器是包含生物识别元件的分析设备,可捕获分析物和换能器,以将识别相互作用转换为可测量的信号。生物学识别元件可以是核酸(DNA和RNA),适体,肽,酶,抗体和微生物。生物识别元件的生化特性使生物传感器高度敏感和高度选择性对于检测分析物,在测试样品中存在其他生物活性分子或物种的情况下,最小干扰。传感器将生物识别事件转换为可测量的信号,该信号可能是电化学的(安培计量法,电位计和损伤法),光学的(例如等化性,发光和比色),压电,微力机械等。生物传感器提供了许多有吸引力的优势,包括高灵敏度和特异性,快速响应,相对紧凑的大小以及用户友好且具有成本效益的操作,从而允许时间分析。因此,生物传感器在许多应用领域都有非常有希望的未来,包括疾病和健康监测的早期诊断。
用电力(化学和生物化学)更改颜色:正在为从生物电子学到电致(变色)显示的电子应用开发导电聚合物。教师在概念上引入了聚合物,并讨论了如何设计其化学结构以创建新材料特性,包括电荷传导。受到导致2000年诺贝尔化学奖的指导聚合物的启发,学生使用D电池进行电化学的电导聚合物膜合成,从而创建了电色素显示。此后,学生建立了一个简单的2型电池电路,以在聚合物膜上施加不同的电势,从而导致氧化还原化学反应,导致显示器的几种颜色(无色,绿色和蓝色)。讨论了颜色的光学起源以及光吸收对聚合物化学结构的差异敏感。我们以吸光度光谱实验的演示结束了该模块,在该演示中,随着膜的颜色在应用不同的电势时变化,聚合物的吸光度光谱会实时演变。
fe 2 Tio 5(FTO)由于其高理论能力和环境友谊ness [1],引起了锂离子电池(LIB)的广泛关注。然而,大量衰落和下循环性能是过渡金属氧化物的常见问题[2,3]。为了实现更好的电化学性能,研究人员致力于将过渡金属氧化物与其他可以减轻体积变化的材料相结合,即,碳[4]。在这种情况下,碳涂料可以增强循环稳定性,因为它可以抑制FTO纳米颗粒(FTO NP)的聚集[5]。因此,包含FTO和石墨烯的混合结构的制造为开发LIBS中高性能阳极材料的发展提供了有希望的策略。在这项工作中,我们报告了一种两步溶剂热方法,用于合成用还原石墨烯(RGO)装饰的混合FTO NP。与原始的FTO NP相比,当在LIBS中用作阳极材料时,所得的FTO NPS/RGO复合材料表现出优异的ELEC TROCHEMICAL ESTRATIOS。每种表达电化学的增强可以归因于RGO的引入,RGO
摘要:接触时表面电气化的现象是一个长期存在的科学难题,例如,琥珀色的带电样品吸引了羽毛的书面记载,可追溯到公元前600年。与机械摩擦的电绝缘体相关的静电危害已充分记录,并且商用产品的设计,例如复印机和激光打印机,基于电绝缘体的静态充电。尽管如此,这种现象的物理化学起源仍在争论中。这种观点概述了我们对接触电气背后的机制以及绝缘体电化学的新兴研究领域的最新进展。研究开始证明如何利用在绝缘表面上存在的静态电荷,目的是推动氧化还原反应。这些研究有助于阐明底层化机制,并定义了用于元素发光,金属成核和无面膜光刻的新平台。本文将帮助研究人员在电动机,物理,绿色能量,传感和材料中工作,以了解接触电气对其各自领域的含义。特别关注化学,电子和机械因素影响三束化学反应,以此结论是该领域进一步发展所面临的挑战。
摘要:在Covid-19的大流行过程中,学校学生与高等教育机构建立联系的机会减少了,亲自遇到科学榜样,讨论科学的职业选择并进行动手实践实验室活动。当前的化学研究人员(CCI)是一项成功的基于电化学的STEM职业干预计划,通过与教师和学生的共同创造过程进行了开发和评估。CCI的目标是2倍:首先,通过有形的科学榜样为学校学生提供职业建议,其次,通过动手活动为电化学基本面提供现实世界的背景。在此,据报道,据报道,迄今为止,有一千多名学生的发展从概念到交付,开发了一个新颖的电分析研讨会。学生的任务是解决为什么使用电导率计对电解质进行定量和定性分析而导致电池故障的原因。还通过使用课堂响应系统(也称为“点击器”)来匿名收集学生的反馈。与教师的反馈一起,提出了强大的评估,以衡量提供切实的科学榜样和研讨会的实用性的影响。关键词:电化学,中学,外展,研究人员■简介
对食源性病原体引起的疾病的快速评估和预防是各个国家所面临的现有食品安全监管问题之一,它受到了社会各部门的广泛关注。食物中食源性病原体的含量高于极限标准并以某种方式传播时,它会引起疾病爆发,这会严重威胁人类健康或生命安全。开发一种新颖的方法来准确和迅速地检测出食物的病原体是重要的。由于复杂步骤的局限性,耗时,低灵敏度或常用方法的选择性差,因此开发了基于电化学的光电化学(PEC)生物传感器。其优点包括低背景信号,快速响应和简单操作。它也具有广泛的传感应用程序,这引起了广泛的关注。然而,尚未报道最新的PEC生物传感器的有组织的摘要。因此,这篇综述介绍了使用PEC生物传感器的食源性病原体检测的最新进展,如下所示:(i)PEC生物传感器的构建,(ii)PEC生物传感器在检测食物生病原体和(iii)该领域未来发展方向的研究状态。希望这项研究将为制定更成熟的生物敏感策略提供一些见解,以满足食源性病原体监测的实际需求。