由模拟大脑生物电信息处理的忆阻器构建的神经形态系统可能会克服传统计算架构的限制。然而,仅靠功能模拟可能仍无法实现生物计算的所有优点,生物计算使用 50-120 mV 的动作电位,至少比传统电子设备中的信号幅度低 10 倍,以实现非凡的功率效率和有效的功能集成。因此,将忆阻器中的功能电压降低到这种生物幅度可以促进神经形态工程和生物模拟集成。本综述旨在及时更新这一新兴方向的努力和进展,涵盖设备材料成分、性能、工作机制和潜在应用等方面。
脑机接口(BCI)可以建立大脑与外部设备之间的信息交互,从而实现对活体生物组织行为的有效控制和协调,最终实现生物智能与人工智能的完美融合。[1,2]大脑作为神经系统中最高级的部分,在多维信息处理、智能计算与决策方面具有极高的效率和极低的功耗,这主要归功于神经元之间复杂的连接。[3–7]作为大脑计算引擎的神经元通过突触紧密连接(图1 a)。在生物突触中,传递到突触前神经元的神经电刺激(动作电位)导致电压门控Ca 2 +通道的开放,导致Ca 2 +离子内流,进而诱导胞吐的发生,促进神经递质的释放到突触间隙。来自突触间隙的神经递质在突触后质膜被NMDA和AMPA受体/离子通道接收,导致离子通道的开放或关闭,最终离子内流进入突触后神经元并建立突触后电位,这表明该过程在调节突触后细胞膜电导和膜电位的快速变化中起着重要作用(图1b)。[2,7–9]在此过程中,产生动作电位时膜电位的变化可分为静息、去极化、复极化和超极化四个阶段,如图1c和表1所示。如我们所见,生物系统的实际工作电压要求约为50–120 mV(生物电压)。 [10,11] 另一方面,基于与生物神经系统高度相似的忆阻器的类脑神经形态器件研究取得了重要进展,从根本上突破了冯·诺依曼瓶颈,真正实现了存储与计算的一体化。值得注意的是,受到生物大脑高效计算、低功耗的启发,忆阻器的工作电压与生物系统所需的生物电压相匹配,可以高效地处理复杂信息并进行进一步决策,为与生命体的连接和通信奠定基础。
特此证明,我于同日通过能源局电子归档系统在以下地址提交了上述动议:http://radicacion.energia.pr.gov 并送达 margarita.mercado@dlapiper.com;carlos.reyes@ecoelectrica.com;Legal@lumamc.com;wayne.stensby@lumamc.com;mario.hurtado@lumamc.com;Ashley.engbloom@lumamc.com;mgrpcorp@gmail.com, victorluisgonzalez@yahoo.com;yan.oquendo@ddec.pr.gov;aconer.pr@gmail.com;cpares@maximosolar.com;agraitfe@agraitlawpr.com;rstgo2@gmail.com;ingridmvila@gmail.com;gonzalo.rodriguez@gestampren.com;dortiz@elpuente.us; lga@elpuente.us; malu.blazquez@reimagina.pr.org; Presidente@ciapr.org; sergio.gonsales@patternenergy.com; h.bobea@fonrochepr.com; lionel.orama@upr.edu; energiaverdepr@gmail.com; manuel.mata@aes.com; obed.santos@aes.com; hrivera@oipc.pr.gov; jeff.lewis@terraform.com; cfl@mcvpr.com; fortiz@reichardescalera.com; javier.adiego@x-elio.com; hjcruz@urielrenewables.com; viviana.Harrington@sunnova.com; tara.dhimitri@longroadenergy.com; rafael.quintana@aes.com; abigail.reyes@aes.com;会计@everstreamcapital.com; Arocheleau@terraform.com; leslie@sonnedix.com; ramonluisnieves@rlnlegal.com; jczayas@landfillpr.com; auriarte@newenergypr.com; pjcleanenergy@gmail.com; javrua@gmail.com; jeanna.steele@sunrun.com; cpsmith@unidosporutuado.org;米尔德雷德@liga.coop; rodrigomasses@gmail.com; Presidente@camarapr.net; norywrivera@contructorespr.net; agc@agcpr.com; jmarvel@marvelarchitects.com 和 presidencia-secretarias@segurosmultiples.com。
摘要:目前,光伏电池存储系统(PV-Bess)的安装能力正在迅速增加。在传统的控制方法中,PV-BES需要在离网和连接的状态之间切换控制模式。因此,传统控制模式降低了系统的可靠性。此外,如果系统意外地与网格断开或能量电池无法正常工作,则逆变器的直流电压会迅速增加或降低。为解决这两个问题,在本文中提出了联合控制策略。在网格连接的情况下,基于电压控制的VSG策略,该策略通过更改主要频率调制曲线的位置来调节VSG的输出功率。此方法可以确保系统连接到网格后,可以将多余的光伏电源发送到网格,或者可以从网格中吸收功率以充电以充电储能。在离网状态下,该策略使用FPPT技术并将电压组件叠加到电压环上,以快速平衡逆变器的直流电源和交流电源。如果储能无法正常工作,则该策略可以提高系统电源的可靠性。最后,使用Matlab-Simulink构建了PV-BES模型,模拟结果证明了拟议策略的有效性。
摘要 - 发电机上的恒定输出电压对于产生预期的电源非常重要。发电机的输出电压的变化受各种令人不安的因素的影响,其中之一是每分钟的负载和旋转(rpm),并不总是恒定的。因此,我们需要一种特殊的调节设备来保持发电机输出电压恒定。必须克服负载变化期间电压不稳定性的问题,以保持电压恒定,以便需要设备可以控制电压稳定性。此工具是自动电压调节器(AVR)。本研究的目的是在单相轴向发生器系统中设计电压控制装置。使用的研究方法包括3个阶段,即:1)。工具的设计和设计,2)。制造工具的阶段,3)。测试工具的阶段。当内部气隙为0.4 cm,外部0.5 cm和rpm 2589的轴向发生器时,获得了研究的结果。发电机的输出电压开始显着降低,直到达到-70伏,RPM也降至-200。相比之下,当使用AVR操作发生器时,还原仅达到-30伏。但是,当发电机使用AVR操作时,RPM的减小更大,直到达到-220。
Ź i = Zi/ α 1 β 1 α 2 δ 2 (2) 其中 α 1,2 = (1 ─ε i,1,2 )/ (sτ i,1,2 +1) ,β 1 = (1 ─ε v1 )/ (sτ v1 +1) 和 δ 2 = (1 ─ε o1 )/ (sτ o1 +1)。直流增益误差完全可以忽略不计 ( ε << 1)[ 13] ;滚降极点出现在非常高的频率范围 (>> 100MHz) 并且它们非常接近 [14 ]。因此,我们可以写出 τ i,v,z ≈τ ≡ 1/ω p ,从而得出 α 1 β 1 α 2 δ 2 = 1/ { (sτ) 4 + (4sτ ) 3 + (6sτ) 2 + 4s τ +1 (3)忽略高阶项,对于频域写出 sτ = jωτ ≡ jω/ω p ≈ ju ;我们得到一个修正的 L 值,其中 u << 1,因为 Ĺ /L ≈ {1/ √(1+16 u 2 )} ∟─arctan (4 u ); u << 1 (4)因此,器件滚降极点的影响可以忽略不计。如图 1(a) 所示,将所提出的 VVI 应用于具有分流电容器 (C s ) 和串联电阻器 (r) 的选择性 BP 滤波器中,其传递函数为 V o /V i (s) ≡ F(s) 为 F(s) = (sL/r)/ { s 2 LC s (1+ m ) +(sL/r) + 1} (5)
鉴于能源战略 1 、可再生能源的发展以及冬季的安全电力供应,联邦议会于 2022 年 9 月 30 日在《能源法》中引入了新的第 71a 条,作为“确保冬季短期内安全电力供应的紧急措施”的一部分,该条款于 2022 年 10 月 1 日通过紧急决定(太阳能攻势)生效。 2 本新条款规定简化大型光伏系统的授权发布及其融资的要求,特定单一报酬最高相当于投资成本的 60%,具体数额将根据具体情况确定。但该规定的范围有时间限制,仅在瑞士现有的大型光伏系统年总发电量达到 2 TWh 时才有效。
本研究通过 CV 和 IV 分析研究了新型 MIS 结构 TiN/Al 2 O 3 /P-Si 的电性能,采用 Silvaco TCAD 软件进行模拟。检查各种参数,包括频率、温度、氧化物厚度、表面条件和掺杂水平,揭示了它们对器件特性的影响。模拟结果与理论预期非常吻合,验证了模拟方法的有效性。发现温度变化会影响平带电压,可能是由于氧化物电荷密度和界面缺陷密度的变化,而在 77 K 至 300 K 的温度范围内观察到弱反转区。频率依赖性很明显,特别是在 1 GHz 时,对 CV 行为有显著影响。IV 分析揭示了不对称的温度激活,表明存在双传导机制。此外,更高的掺杂水平与负电压范围内的电流密度增加相关。对具有不同介电厚度的电容器的模拟漏电流表明行为不均匀,由于能带图不对称,从栅极注入电子导致与基板相比更高的电流密度。这强调了降低氧化物厚度对漏电流行为的影响。