本论文旨在为有视觉障碍的个体开发一个负担得起的立体视频导航系统。通过解决预算限制内的实际实施挑战,该研究旨在探索在视觉上受损的社区中使用双目摄像机在辅助技术中的可行性。立体视觉系统项目涉及对其技术和局限性的广泛研究,尤其是专注于双眼相机设置和机器学习。组装的立体声视觉设备利用开源计算机视觉库(OPENCV)进行对象识别和视频处理,启用距离计算(深度估计)。该项目具有双眼摄像机的持有人,并为用户提供了控制器形状的反馈系统。使用计算机辅助设计(CAD)软件实心边缘和三维(3D)打印的设计结合了振动电动机,以传达环境特性和障碍物接近用户。实施后,进行了实际测试,并评估了模块。项目的结果是针对双眼相机的完整设计,也是一个能够向用户提供信息的触觉反馈系统,从而使经过简单对象的导航能够。通过机器学习,该信息包括纸板箱的检测以及这些盒子的深度估计,这些盒子是根据校准和三角测量计算得出的。深度估计不会产生准确的结果,但是机器学习表现出很高的熟练程度,可以识别纸板箱。实际测试的结论表明,如果在该主题内完成了进一步的深入探索,则可以将双眼摄像机实施并发展为视觉障碍者的技术援助。
TDK-Lambda UK Ltd Kingsley Avenue Ilfracombe Devon EX34 8ES UK +44 (0)1271 856600 tlu.powersolutions@tdk.com www.emea.lambda.tdk.com/uk
摘要:为了增加电池以进行可持续运输和储能,需要提高锂离子电池的充电和排放能力。为了实现这一目标,描述细胞内部状态的准确数据至关重要。已经得出了几种模型,并报告了这些模型中的运输系数。我们首次报告了一组完整的传输系数,以建模锂离子电池电池三元电解质中的浓度和温度极化,从而使我们能够测试常见的假设。我们包括化学势和温度下的梯度引起的效果。我们发现,由于盐和溶剂极化引起的电压贡献与欧姆损失相同,并且必须考虑到更准确的建模和对电池性能的理解。我们报告了新的Soret和Seebeck系数,并发现与电池研究相关的情况下,热极化很重要。总体上,分析适用于电化学系统。■简介
摘要 — 光伏 (PV) 在现代电力系统中的重要性日益凸显。随着光伏发电的发展,可靠性问题也随之而来,因为光伏发电的行为与传统发电机不同。其中一个可靠性问题是电压稳定性。本文使用具有不同光伏渗透水平的动态模型,研究了德克萨斯州电力可靠性委员会 (ERCOT) 系统中奥斯汀地区的电压稳定性。基准情况设定为可再生能源渗透率为 0%。其他情况包括 15% 的风能渗透率和高达 65% 的光伏渗透率。研究结果表明,电压/无功控制能力对电压稳定性至关重要,而光伏发电缺乏这种能力。光伏的电压调节可能会导致过压,并且在区域光伏渗透率高的情况下,电压崩溃可能会更加突然。
1 内布拉斯加大学林肯分校物理和天文系,内布拉斯加州林肯市 68588,美国;888tke405@gmail.com (TKE);guanhuahao@huskers.unl.edu (GH);neojxy@gmail.com (XJ);andrew.yost@okstate.edu (AJY);xiaoshan.xu@unl.edu (XX) 2 劳伦斯伯克利国家实验室先进光源,加利福尼亚州伯克利市 94720,美国 3 印第安纳大学普渡大学印第安纳波利斯分校物理系,印第安纳州印第安纳波利斯 46202,美国;aamosey@iupui.edu (AM);daleas@iupui.edu (ASD) 4 俄克拉荷马州立大学物理系,俄克拉荷马州斯蒂尔沃特市 74078,美国 5 桑迪亚国家实验室先进材料科学系,新墨西哥州阿尔伯克基市 87185,美国; krsapko@sandia.gov (KRS); gtwang@sandia.gov (GTW) 6 分子铸造厂,劳伦斯伯克利国家实验室,伯克利,加利福尼亚州 94720,美国;JianZhang@lbl.gov 7 德克萨斯大学达拉斯分校电气工程系,理查森,德克萨斯州 75080,美国;Andrew.Marshall@utdallas.edu 8 佐治亚理工学院电气与计算机工程学院,791 Atlantic Drive NW,亚特兰大,乔治亚州 30332,美国;azad@gatech.edu * 通信地址:atndiaye@lbl.gov (ATN); rucheng@iupui.edu (RC); pdowben1@unl.edu (PAD);电话:+1-510-486-5926 (ATN);+1-317-274-6902 (RC); +1-402-472-9838 (PAD) † 对本工作有同等贡献。
摘要 本文提出了一种用于改善采样线性度的新型自举开关。该技术通过引入负电压自举电容来降低关键信号节点的寄生电容,从而提高其线性度。采用0.18 µ m互补金属氧化物半导体技术对所提电路进行仿真,其寄生电容比传统结构大约降低30%。在轨到轨输入情况下,在50 MHz采样率下,采用1.2 V电源供电时,所提开关实现了83.3 dB的信噪比 (SNDR) 和82.3 dB的无杂散动态范围 (SFDR)。与传统自举开关相比,所提自举开关的SFDR和SNDR分别提高了11.7和12.7 dB。关键词:自举开关、线性、低电压 分类:集成电路(存储器、逻辑、模拟、射频、传感器)
VDD欠压保护 UVLO(OFF) VDD 电压下降 8.5 9.5 10.5 V VDD启动电压 UVLO(ON) VDD 电压上升 14 15.5 16.5 V VDD过压保护 VDD_OVP 31 33 35 V VDD钳位电压 VDD_Clamp I(VDD)=7mA 33 35 37 V 反馈输入部分(FB管脚) 反馈参考电压 VFB_EA_Ref 1.98 2.0 2.02 V 输出过压保护阈值电压 VFB_OVP 2.4 V 输出短路阈值 VFB_Short 0.65 V 输出短路钳位频率 FClamp_Short 40 KHz 退磁比较器阈值 VFB_DEM 75 mV 最小关断时间 Tmin_OFF 2 uSec 最大关断时间 Tmax_OFF 3 mSec 最大线缆补偿电流 ICable_max 40 uA 电流检测部分(CS管脚) CS前沿消隐时间 T-blanking 500 nSec 芯片关断延迟 TD_OC CL=1nF at GATE 100 nSec 恒流控制部分(CC管脚) 内部CC基准电压 V_CC_ref 490 500 510 mV
特殊说明 TM512AE0 单位 参数名称 参数符号 测试条件 最小值 典型值 最大值 低电平输出电流 Iol Vo =0.4V,ADRO 10 - - mA 高电平输出电流 Ioh Vo =4.6V,ADRO 10 - - mA 输入电流 Ii - - ±1 µA 差分输入共模电压 Vcm 12 V 差分输入电流 Iab VDD=5V 28 µA 差分输入临限电压 Vth 0V