Chiagozie Mbah 6 摘要 目的:本研究旨在增强射频 (RF) 能量收集的电压倍增器,重点是提高收集能量的效率。这一改进对于可持续能源应用和减少化石燃料造成的环境污染至关重要。 理论参考:射频能量收集技术正逐渐被认可为一种可行的可持续环境能量捕获方法,早期的研究主要集中在天线和电路设计上。尽管如此,能量收集的有效性仍然受到功率输出不足的限制。本研究在先前的研究基础上,直接比较了两种常用的电压倍增器,即 Cockcroft Walton 和 Dickson 倍增器,并将其应用于射频能量收集。 方法:使用 Multisim 对 Cockcroft Walton 和 Dickson 电压倍增器进行优化设计,并使用 MATLAB 分析其性能。比较是在两个频率范围内以 1V 的输入电压进行的:85 MHz – 110 MHz(FM 频段)和 1.8 GHz – 3.0 GHz(4G 频段)。记录了两个倍增器的输出电压,并在这些频带上进行了比较。结果与结论:在 FM 频带(85 MHz – 110 MHz)内输入电压为 1V 时,Dickson 电压倍增器的性能优于 Cockcroft Walton 倍增器,其输出电压为 11.1V,而 Dickson 为 6.6V。然而,在 4G 频带(1.8 GHz – 3.0 GHz)中,Cockcroft Walton 倍增器的效率更高,其最大输出电压为 5.2V,而 Dickson 为 4.1V。研究得出结论,Dickson 倍增器更适合从 FM 频带收集射频能量,而 Cockcroft Walton 倍增器更适合 4G 频带能量收集。研究意义:研究结果表明,不同的射频能量收集应用可能受益于不同的电压倍增器,具体取决于所涉及的频带。这可以指导未来旨在实现可持续能源解决方案的技术中更高效的射频能量收集电路的设计。原创性/价值:本研究直接比较了不同射频频率条件下的两个电压倍增器,为优化绿色能源应用的能量收集技术提供了宝贵的见解。研究结果有助于加深对特定射频频段高效电路设计的理解,有助于开发更有效的能量收集系统。关键词:电压倍增器、Cockcroft-Walton 电压倍增器、Dickson 电压倍增器、能量收集、射频。
如对本文件有疑问,请发送电子邮件至新南威尔士州交通局资产管理处standards@transport.nsw.gov.au 或访问 www.transport.nsw.gov.au © 新南威尔士州交通局 2024 年版权所有
Changes from Revision H (February 2020) to Revision I (July 2020) Page • Added the Functional Safety-Capable feature.................................................................................................... 1 • Added the BQ771823 device to the Device Comparison Table ......................................................................... 3 • Added BQ771823 to the DC Characteristics ..................................................................................................... 6 • Added BQ771823 delay settings to Section 7.6 ................................................................................................ 7
外显子和靶向测序的最新进展显着改善了癫痫病的病因诊断,揭示了持续数量的癫痫相关致病基因。因此,癫痫的诊断和治疗变得更容易获得,更可追溯。电压门控钾通道(KV)调节神经元系统中的电兴奋性。突变的KV通道已与癫痫有关,如在使用基因敲除小鼠模型的研究中所证明的那样。通过不同的机制,KV通道的增益和功能丧失导致具有相似表型的癫痫病,从而为癫痫的诊断和治疗带来了新的挑战。对遗传癫痫的研究正在迅速发展,几名候选药物靶向突变的基因或出现的通道。本文简要概述了与电压门控钾离子通道功能障碍相关的癫痫的症状和发病机理,并突出了治疗方法最近的进展。在这里,我们回顾了近年来与癫痫相关的基因突变的病例报告,并总结了KV基因的比例。我们的重点是针对与癫痫有关的特定电压门控通道基因的精确处理进展,包括KCNA1,KCNA2,KCNB1,KCNB1,KCNC1,KCND2,KCND2,KCNQ2,KCNQ2,KCNQ3,KCNQ3,KCNH1,KCNH1和KCNH5。
电压门控钾通道是导致细胞膜复制中钾外排出的钾通道的广泛分布的亚组,因此有助于作用电位的潜伏和传播。由于它们是突触传播的因果,因此对这些通道的结构的改变会导致各种神经系统和精神病。在大脑中的许多神经元上发现了电压门控钾通道的KV3亚家族,包括抑制性神经元,在这些神经元中有助于快速发射。这些中间神经元的发射能力的变化会导致抑制性和兴奋性神经传递的失衡。迄今为止,我们对兴奋性和抑制投入不平衡的机制几乎没有理解。这种不平衡与神经系统和神经精神疾病的认知缺陷有关,这些缺陷目前难以治疗。在这篇综述中,我们对支持以下假设的证据进行了整理,即电压门控钾通道,特别是KV3亚科是许多神经系统和精神疾病的核心,因此可以被视为有效的药物靶标。此处回顾的研究提供的集体证据表明,KV3通道可能适合调节这些通道活性的新型治疗方法,并有改善的患者预后。
摘要 超级电容器越来越多地用作储能元件。与电池不同,它们的充电状态对正常工作时的电压有相当大的影响,使它们能够从零工作到最大电压。在本文中,根据这些设备的工作电压,对其能效进行了理论和实践分析。为此,对几个超级电容器进行了充电和放电循环,直到电流和电压的测量值稳定下来。此时计算了它们的能量效率。这些充放电循环是在以下情况下进行的:i)充电和放电之间不休息;ii)两个阶段之间休息几分钟。利用从测试中获得的信息,绘制了能量效率与最小和最大工作电压的关系图。通过查阅数据和图表,可以获得优化这些设备能效的理想工作电压。
1 新疆大学可再生能源发电与并网教育部工程研究中心,乌鲁木齐 830049,新疆,中华人民共和国。2 新疆电力有限公司电力科学研究院,乌鲁木齐 830049,新疆,中华人民共和国。通讯作者:吴嘉辉 (wjh229@xju.edu.cn)。摘要:随着储能电站领域的蓬勃发展,电池系统状态和故障的预测受到广泛关注。电压作为各类电池故障的主要指示参数,准确预测电压异常对确保电池系统的安全运行至关重要。本研究采用基于 Informer 的预测方法,利用贝叶斯优化算法对神经网络模型的超参数进行微调,从而提高储能电池电压异常预测的准确性。该方法以1分钟为采样间隔,采用一步预测,训练集占总数据的70%,将预测结果的均方根误差、均方误差和平均绝对误差分别降低至9.18mV、0.0831mV和6.708mV。还分析了实际电网运行数据在不同采样间隔和数据训练集比例下对预测结果的影响,从而得到一个兼顾效率和准确性的数据集。所提出的基于贝叶斯优化的方法可以实现更准确的电压异常预测。
联系人地址4主要代表4购买信息5产品注册6为什么要注册您的购买?6 How to Register Your Purchase 6 Product Announcement Mailing List 6 EU Declaration of Conformity 8 History of the DS2A 9 Hardware & Controls Overview 10 Major Features 11 Symbols Used 12 Trigger Sources & Input Requirements 12 External Pulse Duration Control 14 Single-Shot Trigger Button 14 Output Characteristics 15 Output Impedance 15 Device Mounting 16 Accessories 16 Batteries 16 Battery Testing 17 Battery Life 17 Battery Replacement 17 Internal View & Jumpers 19 “Single” Jumper 19规格20保修信息22有限保修22获得保修服务22产品更改或中止22参考23常见问题24操作员注26