脑电反馈是一种基于脑电图技术的无创脑刺激方法,通过脑机接口将脑电生理活动信号传送到计算机,将脑电活动的实时变化作为反馈刺激给予被试自身,帮助被试学习如何自我调节大脑活动。脑电反馈应用十分广泛,可作为精神疾病的辅助治疗、健康个体的认知能力提高以及作为脑电生理特征与认知功能相互作用的实验条件。为了对脑电反馈有一个清晰的认识,本文从脑电反馈系统的组成部分、脑电反馈方案的设计要素、脑电反馈的评价以及脑电反馈的机制理论四个部分对其进行了综述。
海浪力量是间歇性可再生能源的最持久,最集中和可预测的形式之一。全球估计的资源量达到近3tw的年平均功率,波浪能在将来可能涵盖间歇性可再生能源混合的显着部分。从波浪中收集能量非常具有挑战性,并且该行业仍然不成熟,世界各地只有少数商业前系统。现有的波能转换器(WEC)复杂而昂贵,构建,安装和维护。它们也容易受到海洋环境(经历大型冲动载荷和腐蚀)的攻击,并显示出有限的能量转换效率。在这种情况下,介电弹性体发生器(DEGS)可以提供使波能利用的技术突破。DEG是由不可压缩的弹性介电层和兼容的电极制成的可变形电容器,可用于通过可变电容静电生成来将机械能将其转换为电能。1
收稿日期 : 2020-01-03 基金项目 :国家自然科学基金( 61763037 );内蒙古自然科学基金( 2019LH06007 );内蒙古自治区科技计划( 2019 , 2020GG0283 ) 通信作者 :齐咏生( 1975 —),男,博士、教授,主要从事风电机组状态监测与故障诊断方面的研究。 qys@imut.edu.cn
Tianyu 等 [24] 报道了一种基于金属液滴的毫米级热开 关 , 如图 7(a) 所示 , 热开关填充热导率相对较高的液
同时,它将卷积神经网络与传统方法相结合,以基于短时傅立叶变换和连续小波变形的特征提取方法提出特征提取方法。卷积神经网络分类算法使用特征提取算法来提取时间频率特征来制作时间频率图,并使用卷积网络来快速学习分类的功能。测试结果表明,该算法在运动图像脑电图公共数据集中的精度为96%,而自制数据集的精度率约为92%,这证明了算法在运动成像EEG分类中的可行性。
零能源建设电力 - 热热双层能量优化控制方法Kong Lingguo 1,Wang Shibo 1,Cai Guowei 1,Liu Chuang 1,Guo Xiaoqiang 2
4) Scheffer IE、Berkovic S、Capovilla G 等。ILAE 癫痫分类:ILAE 分类和术语委员会立场文件。癫痫 2017;58:512-21。5) Gibbs FA、Gibbs EL。脑电图图集。第 1 卷:方法和对照。马萨诸塞州雷丁:Addison-Wesley,1951 年。6) Yoshida Harumi。应用等电位脑电图对小儿脑电图发育的研究。 脑电图和肌电图 1984 ; 12 : 248-60。7) Yoshinaga H, Koutroumanidis M, Kobayashi K, et al. Panayiotopoulos 综合征的脑电图偶极子特征。癫痫 2006 ; 47 : 781-7。8) Seeck M, Koessler L, Bast T, et al. IFCN 的标准化脑电图电极阵列。临床神经生理学 2017 ; 128 : 2070-7。9) Otsubo H, Sharma R, Elliott I, Holowka S, Rutka JT, Snead OC 3rd. 通过侵入性监测硬膜下电极确认患有右额中央癫痫的青少年的两个脑磁图癫痫灶。癫痫1999;40:608-13。10) Shiraishi H、Ahlfors SP、Stufflebeam SM 等。比较三种用脑磁图定位发作间期癫痫样放电的方法。J Clin Neurophysiol 2011;28:431-40。11) Kobayashi K、Akiyama T、Oka M、Endoh F、Yoshinaga H。West 综合征患者在高峰失常期间出现快速(40-150 Hz)振荡风暴。Ann Neurol 2015;77:58-67。12) Kobayashi K、Watanabe Y、Inoue T、Oka M、Yoshinaga H、Ohtsuka Y。儿童睡眠诱发的电癫痫持续状态中头皮记录的高频振荡。癫痫2010;51:2190-4。13) Cao J,Zhao Y,Shan X,等。基于脑电图记录的大脑功能和有效连接:综述。Hum Brain Mapp 2022;43:860-79。14) Willett FR,Avansino DT,Hochberg LR,Henderson JM,Shenoy KV。通过手写实现高性能的脑到文本通信。Nature 2021;593:249-54。15) Jing J,Sun H,Kim JA,等。脑电图解释过程中癫痫样放电专家级自动检测的开发。JAMA Neurol 2020;77:103-8。16) Kobayashi K,Shibata T,Tsuchiya H, Akiyama K. 基于人工智能的儿科头皮脑电图癫痫放电检测:一项初步研究。Acta Med Okayama 2022;76:617-24。17)Scheffer LK、Xu CS、Januszewski M 等。成年果蝇中枢脑的连接组和分析。Elife 2020;9:e57443。18)Cutsuridis V、Cobb S、Graham BP。海马 CA1 微电路模型中的编码和检索。海马 2010;20:423-46。19)Kobayashi K、Akiyama T、Ohmori I、Yoshinaga H、Gotman J。动作电位导致用远离神经元的电极记录的癫痫高频振荡。临床神经生理学2015;126:873-81。
脑电图 (EEG) 是通过放大和记录人体头皮上由大脑电流产生的电活动而获得的记录 (Zandi 等人,2011;Larson 和 Taulu,2018)。EEG 是脑成像科学中广泛使用的媒介,在脑机接口 (BCI;Gao 等人,2021) 研究中发挥着重要作用。BCI 是一种将脑信号转换为有用命令的在线计算机系统。到目前为止,不同类型的脑信号已被用于开发 BCI 系统。由于其方便和低成本,EEG 信号已成为 BCI 系统中的主要媒介。然而,实践证明,由于 EEG 信号能量较弱,EEG 信号的采集很容易受到各种噪声的干扰。为了从嘈杂的 EEG 信号中提取有用信息 (Shad 等人,2020),在 EEG 信号分析中研究了各种信号处理方法。在脑信号分析中,提高信噪比是一个重要的预处理步骤。传统上,它是使用快速傅里叶变换(FFT)完成的(Wahab et al., 2021)。在BCI中,FFT也用于从EEG信号中实现显著特征的提取。短时傅里叶变换是FFT的增强,它可以生成EEG的二维频谱表示(Ha and Jeong,2019)。然而,STFT的主要缺点是其频率分辨率不可调。Huang提出了一种将STFT与卷积神经网络相结合用于生物医学信号分类的方法(Huang et al., 2019)。此外,基于傅里叶分析的数字滤波器也是EEG信号去噪的重要工具(Hsia and Kraft,1983)。它们的应用包括噪声伪影去除、特定频带的特征选择。尽管近年来新的脑电滤波技术不断涌现,但滤波技术并不是 BCI 研究的重点,相关研究也报告了数字滤波器的缺点(Alhammadi and Mahmoud,2016)。在过去的几十年中,随着计算能力的提高,许多更先进的信号处理方法被发明并投入实践。Upadhyay 提出了一种结合 S 变换和独立成分分析的新技术,用于脑电信号中的伪影消除和噪声抑制(Upadhyay et al.,2016)。Djemili 利用经验模态分解将脑电信号分解为固有模态函数,实现了正常和癫痫脑电特征的智能分类(Djemili et al.,2016)。Jiang 的研究中,提出了一种基于多词典的稀疏表示方法,用于癫痫脑电尖峰的自动检测(Jiang et al.,2020)。 Dora 应用变分模态分解来校正 EEG 测量中的伪影(Dora 和 Biswal,2020 年)。Chen 提出了一种稀疏傅里叶变换,并将其应用于电力线伪影消除(Chen et al.,2021b)。