显示指数衰减拟合 y = 846.9 nm*e (-x/1174.83nm) ,R 2 = 0.96。(b)1 wt% PVP 以 0.1 mL/hr 喷涂在不同厚度的 Parylene C-on-Si 基板上 60 分钟。由于气相沉积的保形特性,水平误差线不可见。蓝色轨迹是指数衰减拟合 y= 815.6 nm*e (-x/567.4 nm) ,R 2 = 0.98。(c)1 wt% PVP 以 0.1 mL/hr 喷涂在不同厚度的 SU-8-on-Si 基板上 60 分钟。黑色轨迹是指数衰减拟合 y = 804.4 nm*e (-x/348.8 nm) ,R 2 = 0.51。
HiSPEED 的目标是开发一种高效的推进系统,以便使用小型卫星进行深空探索。麻省理工学院空间推进实验室开发的离子电喷雾推进系统是首批提供紧凑高效推进系统之一,该系统与立方体卫星外形尺寸兼容。然而,现有的推进器头的寿命短于深空任务所需的发射时间。因此,我们考虑采用分阶段方法,将烧坏的推进器头弹出并更换,从而延长推进系统的整体寿命。
1 罗格斯大学机械与航空航天工程系,新泽西州 08854 2 罗格斯大学生物医学工程系,新泽西州 08854 * jonathan.singer@rutgers.edu
https://doi.org/10.26434/chemrxiv-2024-vptmp-v2 orcid:https://orcid.org/0000-0000-0000-500-5216-8353不通过chemrxiv对内容进行peer-review。 许可证:CC BY-NC-ND 4.0https://doi.org/10.26434/chemrxiv-2024-vptmp-v2 orcid:https://orcid.org/0000-0000-0000-500-5216-8353不通过chemrxiv对内容进行peer-review。许可证:CC BY-NC-ND 4.0
电喷雾离子束中发射物质的角度分布尚未得到很好的表征,并且会对推进性能和发射器寿命产生负面影响。我们使用飞行时间质谱法对单个电喷雾离子束中发射物质的角度分布与发射电压的关系进行了实验表征。角电流分布表明发射中心轴与发射器尖端中心轴的最大偏差为 10 ◦。离子物质随角度的变化取决于发射电压。单粒子轨迹的模拟表明,离子团簇的碎裂会导致离子产物移近光束中心,而中性产物扩散至 47 ◦,具体取决于碎裂发生的速度。将实验结果与电喷雾发射的多尺度全光束模拟进行了比较,并讨论了未来使用这些模拟来解释角光束行为。
电喷雾离子束中发射物质的角度分布尚未得到很好的表征,并且会对推进性能和发射器寿命产生负面影响。我们使用飞行时间质谱法对单个电喷雾离子束中发射物质的角度分布与发射电压的关系进行了实验表征。角电流分布表明发射中心轴与发射器尖端中心轴的最大偏差为 10 ◦。离子物质随角度的变化取决于发射电压。单粒子轨迹的模拟表明,离子团簇的碎裂会导致离子产物移近光束中心,而中性产物扩散至 47 ◦,具体取决于碎裂发生的速度。将实验结果与电喷雾发射的多尺度全光束模拟进行了比较,并讨论了未来使用这些模拟来解释角光束行为。
摘要:在关键细胞过程(例如转录,复制和DNA修复)过程中,DNA三向连接(TWJ)结构瞬时形成。尽管具有重要意义,但TWJ的热力学(包括链长,碱基对组成和配体结合对TWJ稳定性和解离机制的影响)的了解很少。为了解决这些问题,我们将温度控制的纳米电喷雾离子化(TC-NESI)与循环离子迁移率质谱(CIM-MS)仪器连接起来,该仪器也配备了表面诱导的分离(SID)阶段。这种新型组合使我们能够研究三个TWJ复合物的结构中间体,并检查GC碱基对对其解离途径的影响。我们发现,两个TWJ特异性配体2,7-Trisnp和Trispob导致TWJ稳定,这分别揭示了熔化温度(T m)的升高13或26°C。为了洞悉气相中的构象变化,我们采用了IMS并进行了SID来分析TWJ及其配体的复合物。对IM到达分布的分析表明,TWJ的单步分离及其中间体对三个研究的TWJ复合物进行了分解。在配体结合后,需要3 V(2,7-Trisnp)和5 V(TrispoB)较高的SID能量才能诱导TWJ的50%解离,而在没有配体的情况下为38 V。我们的结果表明,利用TC-ESI与CIMS结合使用,SID和SID进行TWJ复合物的热力学表征和配体结合的研究。这些技术对于TWJ设计和开发作为药物靶标,适体和功能生物材料的结构单位至关重要。
摘要:天然质谱 (nMS) 通过“软”电喷雾电离 (ESI) 保留非共价相互作用,从而深入了解生物大分子在其天然状态下的结构和动力学。对于天然蛋白质,获得的电荷数量与表面积和质量成比例。在这里,我们探索了高度带负电荷的 DNA 对蛋白质复合物 ESI 电荷的影响,发现质荷比降低以及变化较大。纯 DNA 组装体的电荷状态分布比蛋白质低,因为它们在气相中的密度较大,而蛋白质-DNA 复合物的电荷还可能受到 ESI 电荷分布、离子配对事件和 DNA 成分崩塌的影响。我们的研究结果表明,蛋白质-DNA 复合物的结构特征可能导致蛋白质的电荷状态低于预期。关键词:蛋白质-DNA 复合物、电荷状态分布、电喷雾电离 ■ 简介
多模式航天器推进系统集成了两种或多种使用共享推进剂的推进模式。伊利诺伊大学厄巴纳-香槟分校目前正在与 Froberg Aerospace, LLC 合作开发一种结合化学分解模式和电喷雾模式的多模式系统。从根本上讲,多模式航天器推进系统由推进器、电源处理单元和推进剂进料系统组成。本文详细介绍了之前开发的原型单推进剂电喷雾推进器的电源处理单元和进料系统的持续开发。电源处理单元由两个独立的升压电路组成,一个在电喷雾操作期间提供 3.25 kV DC,另一个在化学模式操作期间提供 24 V DC。进料系统架构是一个单一的气体加压系统,每个操作模式都有不同的流路,并且必须在电喷雾模式下提供约 850 nL/s 的体积流速,在化学模式下提供 100 μL/s 的体积流速。
本报告是作为由美国政府机构赞助的工作的帐户准备的。美国政府或其任何机构,也不是巴特尔纪念研究所,或其任何雇员,对任何信息,设备,产物或程序披露或代表其使用的任何法律责任或责任都没有任何法律责任或责任,或者对其使用的准确性,完整性或有用性都不会侵犯私人权利。以此处参考任何特定的商业产品,流程或服务,商标,制造商或以其他方式不一定构成或暗示其认可,建议或受到美国政府或其任何机构或Battelle Memorial Institute的认可,建议或赞成。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。