=> SET LINE 150 => s inp/fa.p and (ms and nmr and ir and uvs)/fa.p 316789 INP/FA.P 12305613 MS/FA.P 14956017 NMR/FA.P 6564641 IR/FA.P 1815392 UVS/FA.P L3 88871 INP/FA.P (MS,NMR和IR和UVS)/fa.p => d l3答案1 of 88871 reaxysfilesu版权所有2024 Elsevier Inc。A 57424697 ReaxySfilesu Cn Euphylonane G Mf C35 H44 O9 CMF C35 H44 O9 LSF C35H44O9 INCHI UMEABDUVKKNCL-ILXCL-ILXCL-ILXCL-ILXCL-ILXCL-ILXCL-ILXSNTAKSA-N MW 608.729 MAMBREF。 2024物质图像不可用的红外光谱(1)关键字|溶剂|位置| ref(s)(.kw)| (.sol)| (.lo)| (ref)============================================================================================频谱|整洁(无溶剂)|支持Informati | 1 | | ON | 1。A 130962458:期刊:Wu,Shu-Qi等人,J。Nat。产品。(2023)质谱(1)关键字|位置| ref(s)(.kw)| (.lo)| (ref)================================================================支持Informati | 1个光谱法(HRMS)| ON | ;电喷雾ionis | | ation(esi);时间| | - 飞行质谱| | (TOFMS);频谱| | 1。A 130962458:期刊:Wu,Shu-Qi等人,J。Nat。产品。(2023)NMR光谱(7)关键字|核|溶剂|位置| ref(s)
摘要:在这项研究中,开发了使用ZnO和还原氧化石墨烯(RGO)复合材料的室温氨气传感器。传感器制造涉及反向偏移和静电喷雾沉积(ESD)技术的创新应用来创建ZnO/RGO传感平台。使用XRD,FT-IR,FESEM,EDS和XP对所得材料的结构和化学特性进行了全面分析,并通过UV-臭氧处理实现了RGO降低。电性能,表明由于紫外线处理而引起的电导率增强,并提高了ZnO -RGO异质结的形成带来的电荷迁移率。暴露于氨气,导致传感器的响应性增加,较长的紫外线治疗持续时间提高了较高的敏感性。此外,测量了响应和恢复时间,10分钟的紫外线处理的传感器显示出最佳的响应能力。绩效评估显示对氨浓度的线性响应性具有高R 2值。与丙酮和CO气体相比,传感器还表现出对氨的特殊选择性,使其成为氨气检测的有前途的候选者。这项研究显示了基于ZnO/RGO的氨气传感器的出色性能和潜在应用,这对气体检测领域有很大的贡献。
质子束直写 (PBW) 是由新加坡国立大学离子束应用中心 (CIBA-NUS) 开发的一种直写光刻技术,该技术利用聚焦质子来制造三维纳米结构 [1 – 3] 。与电子束光刻 (EBL) 相比,PBW 的优势在于质子比电子重 ~1800 倍,这使得质子传递给二次电子的能量更少,可以更直地穿透材料,并在光刻胶中沿其路径沉积恒定的能量 [4] 。凭借这些独特的特性,PBW 可以制造没有邻近效应且具有光滑侧壁的纳米结构 [3,5] 。目前,PBW 在光斑尺寸和吞吐量方面的性能受到 PBW 系统中射频 (RF) 离子源亮度较低 (~20 A/(m 2 srV)) 的限制 [6,7] 。因此高亮度离子源是进一步提升PBW系统性能的关键。降低的亮度是体现光束质量的重要参数,如束流密度、束流角度扩展和束流能量扩展[8,9]。减小虚拟源尺寸是获得高亮度离子源的一种实用方法[10]。高亮度离子源,如液态金属离子源 (LMIS) 和气体场电离源 (GFIS),具有较小的虚拟源尺寸。LMIS 是应用最广泛的高亮度离子源,其尖端顶部有一个液态金属储存器[11-13]。强电场用于将液态金属拉到尖锐的电喷雾锥,称为泰勒锥[14]。
摘要:烷基锡团簇在纳米光刻中用于制造微电子器件。烷基锡 Keggin 家族是整个元素周期表中 Keggin 簇中独一无二的一个;其成员似乎倾向于低对称性的 β 和 γ 异构体,而不是高度对称的 α 和 ε 异构体。因此,烷基锡 Keggin 家族可能为 Keggin 簇的形成和异构化提供重要的基础信息。我们合成并表征了一种具有四面体 Ca 2 + 中心的新型丁基锡 Keggin 簇,其完整结构为 [(BuSn) 1 2 (CaO 4 )- (OCH 3 ) 12 (O) 4 (OH) 8 ] 2+ ( β -CaSn 12 )。该合成是一个简单的一步法。广泛的溶液表征包括电喷雾电离质谱、小角X射线散射和多核( 1 H、 13 C 和 119 Sn)核磁共振,表明β -CaSn 12 基本上是纯相并且稳定的。这与之前报道的Na中心类似物不同,后者总是形成β和γ异构体的混合物,并且容易相互转化。因此,这项研究澄清了之前对Na中心类似物的复杂光谱和晶体学表征的混淆。密度泛函理论计算显示以下稳定性顺序:γ -CaSn 12 < γ -NaSn 12 < β - CaSn 12 < β -NaSn 12。β类似物总是比γ类似物更稳定,这与实验一致。本研究的显著成果包括罕见的四面体 Ca 配位、无 Na 烷基锡簇(对微电子制造很重要)以及对由不同金属阳离子构成的 Keggin 家族的更好理解。■ 简介
摘要:烷基锡簇在纳米光刻中用于制造微电子器件。烷基锡 Keggin 家族是整个元素周期表中 Keggin 簇中独一无二的一个,它们似乎更倾向于较低对称性的 β 和 γ 异构体,而不是高度对称的 α 和 ε 异构体。因此,烷基锡 Keggin 家族可能提供有关 Keggin 簇形成和异构化的重要基本信息。我们合成并表征了一种具有四面体 Ca 2+ 中心的新型丁基锡 Keggin 簇,其完整结构为 [(BuSn) 12 (CaO 4 )(OCH 3 ) 12 (O) 4 (OH) 8 ] 2+ (β-CaSn 12 )。合成是一个简单的一步法。广泛的溶液表征包括电喷雾电离质谱、小角度 x 射线散射和多核( 1 H、 13 C 和 119 Sn)NMR,表明 β-CaSn 12 基本上是纯相并且稳定的。这与之前报道的 Na 中心类似物不同,后者总是形成 β 和 γ 异构体的混合物,并且容易相互转化。因此,这项研究澄清了之前对 Na 中心类似物的复杂光谱和晶体学表征的混淆。密度泛函理论计算表明稳定性顺序为 γ-CaSn 12 < γ-NaSn 12 < β-CaSn 12 < β-NaSn 12 ; 类似物总是比 稳定,这与实验一致。这项研究的显著成果包括罕见的四面体 Ca 配位、无 Na 烷基锡簇(对微电子制造很重要)以及对由不同金属阳离子构成的 Keggin 家族的更好理解。
重油是当前石油剥削的重要资源,重油的化学组成信息对于揭示其粘度引起的机制和解决实用的利用问题至关重要。在这项研究中,使用带有电喷雾电离源的高温气相色谱和高分辨率质谱法的技术用于揭示来自中国西部,中部和东部的典型重油的化学成分。The results indicate that these heavy oils display signi fi cant variations in their bulk properties, with initial boiling points all above 200 C. Utilizing pre-treatment and ESI high-resolution mass spectrometry, an analysis of the molecular composition of saturated hydrocarbons, aromatic hydrocarbons, acidic oxygen com- pounds, sulfur compounds, basic nitrogen compounds, and neutral nitrogen进行了重油内的化合物。最终,通过整合元素含量来实现重油分子组成的半定量分析。Shengli-J8重油和常规的Shengli原油的半定量分析结果表明,Shengli-J8重油缺乏烷烃和低分子量芳族芳烃,这有助于其高粘度。此外,根据分子组成的半定量分析,确定了不同重油的特征分子集。重油中分子组成的半定量分析可能会提供有价值的参考数据,以建立重油中粘度诱导粘度机制的理论模型,并为重油剥削设计降低粘度的降低粘度。©2024作者。Elsevier B.V.的发布服务代表KEAI Communications Co. Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/ 4.0/)下的开放访问文章。
液相色谱-电喷雾电离-高分辨率质谱 (LC-ESI-HRMS) 法测定二甲双胍药物物质和药物产品中的亚硝胺杂质背景:二甲双胍是一种处方药,用于控制 2 型糖尿病患者的高血糖。NDMA(N-亚硝基二甲胺)被归类为 2A 类化合物,因此将其定义为“可能对人类致癌”。FDA 已将药品中 NDMA 的每日可接受摄入量限制为 96 纳克(基于 2550 毫克最大日剂量 (MDD),速释 (IR) 剂量为 0.038 ppm;基于 2000 毫克 MDD,缓释 (ER) 剂量为 0.048 ppm)。FDA 检测与研究办公室已在通过制造商商业购买或直接获得的选定药品样品中筛查了二甲双胍药物物质和药物产品中的 NDMA。已建立二甲双胍的初级 LC-HRMS 筛选并发布于此处。可以使用正交方法 LC-ESI-HRMS 确认阳性 NDMA 结果。结论:根据 ICH Q2(R1) 开发并验证了一种 LC-ESI-HRMS 方法,用于检测和定量二甲双胍药物物质和药物产品中的八种亚硝胺杂质,包括 N-亚硝基二甲胺 (NDMA)、N-亚硝基二乙胺 (NDEA)、N-乙基-N-亚硝基-2-丙胺 (NEIPA)、N-亚硝基二异丙胺 (NDIPA)、N-亚硝基二正丙胺 (NDPA)、N-亚硝基甲基苯胺 (NMPA)、N-亚硝基二正丁胺 (NDBA) 和 N-亚硝基-N-甲基-4-氨基丁酸 (NMBA)。该方法的检测限(LOD)、定量限(LOQ)和范围总结如下:
有几种用于MSI研究的不同技术可以将其分类为硬和软电离技术。硬电离是指将过量的内部能量添加到分子中,并导致分子的广泛碎片化。这种类型的电离对于分子的结构表征非常有用。6软电离技术使用的能量较少,导致分子的分裂较少。因此,靶分子对于分析保持完整。基质辅助激光解吸/电离(MALDI)是进行软电离的最流行的方法之一。MALDI-MS已应用于多种应用,例如细菌7的质谱指纹和聚合物的特征,8种蛋白质,9和肽,其中10个等。MALDI-MS的过程就像Maldi-MSI一样,激光击中了包含矩阵的样品,然后生成离子以进行下检测,以提供有关样品的分子信息。但是,MALDI-MS和MALDI-MSI之间的关键区别在于空间信息。MALDI-MS提供了有关样品的分子信息,但没有以空间定义的方式(如Maldi-MSI赠款)提供此信息,如图1。Maldi-MSI,结合了样品区域上收集的所有光谱以创建一个离子图像,这是单独使用MALDI-MS实现的信息。16,17另一种广泛使用的用于成像的软电离技术是解吸电喷雾电离(DESI)。20,有趣的是,纳米颗粒增强Maldi在成像中广受欢迎,并且该技术已应用于多种样本类型,包括组织,11,12个3D细胞培养物,例如球体和类器官,13-15,甚至是单细胞成像。desi具有使用液体种剂提取的额外好处,该提取允许在环境条件下分析样品。18其他,不太广泛使用的MSI技术包括次级离子质谱法(SIMS)和激光消融电感耦合等离子体(LA-ICP)。SIMS是一种用于成像显示高空间分辨率的硬电离技术。尽管是以分析物分裂为代价的。基于LA-ICP的成像也显示出更高的空间分辨率,但主要提供拓扑元素。
1。为学生提供有关基因组学和蛋白质组学的基本知识2。对基因组映射,结构/功能基因组学,基因组学和蛋白质组学涉及的技术的广泛知识。课程内容单元1:OMICS的基因和基因组介绍;基因组学类型;基因:orf;外显子;内含子;原核,真核和线粒体/叶绿体基因组; shot弹枪DNA测序; c-value&paradox;人类基因组项目。单元2:基因组图和分析基因组映射的基因表达类型;涉及基因组图和基因表达分析的技术(RFLP,RAPD,SSCP,SSLP,STS,RT-PCR; DD-PCR,SNP,FISH,FISH,NUCLEASE保护测定,分子杂交)。单元3:蛋白质组学概念和蛋白质组成分的基础;蛋白质组学在生物学功能中的重要性;蛋白质 - 蛋白质相互作用和研究它的方法:蛋白质阵列,交叉链接方法,亲和力方法,酵母杂种系统。单元4:蛋白质质谱法(MS)的质谱分析 - 肽质量指印,质量精度,分辨率,灵敏度;离子来源:电喷雾电离,基质辅助激光解吸和电离;质量分析仪:四极,离子陷阱,飞行时间,圆形,傅立叶 - 转换离子回旋共振,混合分析仪;探测器; MS-MS; LC-MS。教科书:-1。基因组分析和基因组学原理S.B. Primrose和R.M. Twyman,第三版(Blackwell Publishing)。2。Liebler,“蛋白质组学简介” Humana出版社3。Conard,爱德华。 基因组学。 2.Pennington,SR,Dunn MJ,“蛋白质组学:功能的蛋白质序列”。Conard,爱德华。基因组学。2.Pennington,SR,Dunn MJ,“蛋白质组学:功能的蛋白质序列”。Apple Academics参考书:-1。ODD RW,Primrose SB,“基因操纵原理,基因工程概论”,Blackwell Science Publications。viva书3.生物技术的质谱法:Gary Siuzdak。
液氮温度[3]或单个原子表现出极长的磁性松弛时间。[4-6]特别是,基于晚期兰烷基家族元素(如DID和TB)的系统在很大程度上是焦点,包括单分子[2,3]单原子,[4,5]或单链磁铁。[7,8] SMM在表面上的吸附允许研究单个分子单元,并实现用于在分子规模的旋转型或量子计算设备中实施SMM的运输方案。[9–17]然而,从大量到表面支持的系统的转换通常会随着SMM特性的实质变化甚至丧失,即磁矩,磁性抗溶剂或磁化行为。[18-21]在金属表面上,磁矩与表面的相互作用相当强,这可以通过近神经效应的观察来证明。[22,23]因此,在过去几年中,在底物上报道了表面吸附的SMM的磁性磁性的基准测量,在这些底物上,分子在电子上弱耦合到–TBPC 2上的hopg上的hopg上的tbpc 2,[24] [24]在mgo/ag(100)上[25]以及限制了限制/限制的限制,[26] blocke of light in limit conding of light of condect in limim conding nock in n opping bocke in [26] block ind bock ind bock ind offing bocke nock in n off ins [26]手,DYSC 2 N@C 80单层(111)[27]最近显示出在高达10 K的温度下进行的滞后开口。从这个意义上讲,据报道,lanthanide离子在C 80分子中包含在C 80分子中的大多数SMM,它们的化学鲁棒性和缓慢的磁性松弛的结合。第二需要提出适当的分子沉积方法,这些方法可从表面提供足够的SMM脱钩。[27–31]要进一步推动Monayer制度中的磁性生命周期,必须满足两个重要的标准:第一个要求是合成体积中表现出本质上高的T B的SMM化合物。在这项工作中,我们提供了有关在石墨烯/IR(111)表面上的DY 2 @C 80(CH 2 PH)中出色的慢速磁性松弛的实验证据。通过电喷雾沉积法沉积的DY 2 @c 80(CH 2 PH)分子被组织到岛上,如低温扫描隧道显微镜(STM)成像所示。我们通过X射线吸收光谱(XAS)和X射线磁性圆形二色性(XMCD)测量来探索它们的磁性特性。对Dy 2 @c 80(Ch 2 pH)吸附在石墨烯/IR(111)的磁性松弛行为的分析产生了